Не лги себе. Почему Big Data знает тебя лучше, чем ты сам, и как использовать это, чтобы добиться успеха. Cет Cтивенс-Давидовиц
не позволяют предсказать, насколько те будут счастливы в романтических отношениях.
Вот так обстоят дела, друзья мои. Сегодня искусственный интеллект может:
• обыгрывать даже самых одаренных людей в шахматы и го;
• надежно предсказывать общественные беспорядки за пять дней до их начала, опираясь только на переписку в Интернете[37];
• сообщать людям о том, какие проблемы со здоровьем их ожидают, исходя из естественного запаха их тела[38].
Попросите при этом искусственный интеллект определить, смогут ли два человека счастливо жить вместе – и он окажется беспомощным, как и все мы.
Постойте… но ведь это выглядит настоящим провалом. К тому же это кошмарно плохое начало для главы моей книги, дерзко утверждающей, что наука о данных способна произвести революцию в принятии нами решений относительно своей жизни. Неужели ей в самом деле нечего предложить нам в части выбора романтического партнера – самого важного решения в жизни?
Не совсем. На самом деле из проекта машинного обучения Джоэл и ее соавторов можно извлечь полезные уроки, пусть даже способность компьютеров предсказывать успех в любви оказалась хуже предположений.
Джоэл и ее коллектив обнаружили крайне малое влияние собранных ими переменных на перспективы успеха пары – но при этом наличие у партнера определенных параметров все же чуть увеличивает шансы, что вам с ним будет хорошо. А что еще важнее, из удивительной трудности предсказания успеха в любовных делах вытекают странные следствия, касающиеся выбора партнера.
Давайте задумаемся. Многие считают, что параметры, которые рассматривали Джоэл и ее коллектив, важны при выборе романтического партнера. Они яростно конкурируют за потенциального партнера, обладающего определенными свойствами, думая, что таким образом борются за собственное счастье. Если же свойства, за которые на рынке разворачивается ожесточенная конкуренция, не коррелируют с романтическим успехом – значит, многие выстраивают свою линию поведения в этой области неверно.
Это приводит нас к другому бесконечно древнему вопросу, к решению которого недавно тоже пытались применить принципиально новые данные: как именно люди выбирают романтического партнера?
В последние несколько лет другие исследовательские коллективы предприняли анализ данных с сайтов знакомств. Они рассматривали новые большие массивы данных о чертах характера и привычках десятков тысяч претендентов, чтобы выяснить, что создает привлекательность для романтических отношений. И этот анализ, в отличие от исследования счастья в отношениях, дал вполне осязаемый результат. Если работающие с данными ученые выяснили, что указать качества партнера, предвещающие счастье в отношениях, удивительно сложно, то определить качества, делающие нас такими же привлекательными для противоположного пола, как кошачья мята для кошек, оказалось поразительно просто.
Конец ознакомительного
37
Ed Newton-Rex, “59 impressive things artificial intelligence can do today”, Business Insider, May 7, 2017, https://www.businessinsider.com/artificial-intelligence-ai-most-impressive-achievements-2017-3#security-5.
38
Bernard Marr, “13 mind-blowing things artificial intelligence can already do today”, Forbes, November 11, 2019, https://www.forbes.com/sites/bernardmarr/2019/11/11/13-mind-blowing-things-artificial-intelligence-can-already-do-today/#4736a3c76502.