The Rheology Handbook. Thomas Mezger
Thomas G. Mezger
The Rheology Handbook
For users of rotational and oscillatory rheometers
5th Revised Edition
Cover: Zffoto - stock.adobe.com
Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet über http://dnb.d-nb.de abrufbar.
Mezger, Thomas G.
The Rheology Handbook, 5th Revised Edition
Hanover: Vincentz Network, 2020
European Coatings Library
ISBN 3-86630-532-X
ISBN 978-3-86630-532-8
© 2020 Vincentz Network GmbH & Co. KG, Hanover
Vincentz Network GmbH & Co. KG, Plathnerstr. 4c, 30175 Hanover, Germany
This work is copyrighted, including the individual contributions and figures.
Any usage outside the strict limits of copyright law without the consent of the publisher is prohibited and punishable by law. This especially pertains to reproduction, translation, microfilming and the storage and processing in electronic systems.
The information on formulations is based on testing performed to the best of our knowledge.
Please ask for our book catalogue
Vincentz Network, Plathnerstr. 4c, 30175 Hanover, Germany
T +49 511 9910-033, F +49 511 9910-029
[email protected], www.european-coatings.com
Layout: Vincentz Network, Hanover, Germany
Printed by: Buchdruck Zentrum, Prüm
European Coatings Library
Thomas G. Mezger
The Rheology Handbook
For users of rotational and oscillatory rheometers
5th Revised Edition
Thomas G. Mezger
The Rheology Handbook
For users of rotational and oscillatory rheometers
5th Revised Edition
Foreword
Why was this book written?
People working in industry are often confronted with the effects of rheology, the science of deformation and flow behavior. When looking for appropriate literature, they find either short brochures which give only a few details and contain little useful information, or highly specialized books overcharged of physical formulas and mathematical theories. There is a lack of literature between these two extremes which reduces the discussion of theoretical principles to the necessary topics, providing useful instructions for experiments on material characterization. This book is intended to fill that gap.
The practical use of rheology is presented in the following areas: quality control (QC), production and application, chemical and mechanical engineering, industrial research and development, and materials science. Emphasis is placed on current testing methods related to daily working practice. After reading this book, the reader should be able to perform useful tests with rotational and oscillatory rheometers, and to interpret the achieved results correctly.
How did this book come into existence?
The first computer-controlled rheometers came into use in industrial laboratories in the mid-1980s. Ever since then, test methods as well as control and analysis options have improved with breath-taking speed. In order to organize and clarify the growing mountain of information, company Anton Paar Germany – and previously Physica Messtechnik – has offered basic seminars on rheology already since 1988, focused on branch-specific industrial application. During the “European Coatings Show” in Nuremberg in April 1999, the organizer and publishing director Dr Lothar Vincentz suggested expanding these seminar notes into a comprehensive book about applied rheology.
What is the target audience for this book? For which industrial branches will it be most interesting?
The Rheology Handbook is written for everyone approaching rheology without any prior knowledge but is also useful to people wishing to update their expertise with information about recent developments. The reader can use the book as a course book and read from beginning to end or as a reference book for selected chapters. The numerous cross-references make connections clear and the detailed index helps when searching. If required, the book can be used as the first step on the ladder towards theory-orientated rheology books at university level. In order to break up the text, there are as well many figures and tables, illustrative examples and small practical experiments, as well as several exercises for calculations. The following list reflects how the contents of the book are of interest to rheology users in many industrial branches.
Polymers: Solutions, melts, solids; film emulsions, cellulose solutions, latex emulsions, solid films, sheetings (uni-laminar, multi-laminar), laminates; natural resins, epoxies, casting resins; silicones, caoutchouc, gums, soft and hard rubbers; thermoplastics, elastomers, thermosets, blends, foamed materials; uncrosslinked and cross-linked polymers containing or without fillers or fibers; polymeric compounds and composites; solid bars of glass-fiber, carbon-fiber and synthetic-fiber reinforced polymers (GFRP, CFRP, SFRP); polymerization, cross-linking, curing, vulcanization, melting and hardening processes; powder rheology, resin powders, granulates
Adhesives and sealants: Glues, single and multi-component adhesives, pressure sensitive adhesives (PSA), UV curing adhesives, hotmelts, plastisol pastes (e. g. for automotive underseals and seam sealings), construction adhesives, putties; uncured and cured adhesives; curing process; tack, stringiness
Coatings, paints, lacquers: Spray, brush, dip coatings; solvent-borne, water-based coatings; metallic effect, textured, low solids, high solids, photo-resists, UV (ultra violet) radiation curing, powder coatings; glazes and stains for wood; coil coatings; reactive fire-protection coatings; solid coating films; powder rheology, powder coatings, colored powders (e. g. titanium dioxide, soot), e. g. for additive manufacturing (AM)
Printing inks and varnishes: Gravure, letterpress, flexographic, planographic, offset, screen printing inks, UV (ultra violet) radiation curing inks; ink-jet printer inks; writing inks for pens; mill-base premix, color pastes, “thixo-pastes”; liquid and pasty pigment dispersions; printing process; misting; tack; powder rheology: materials for additive manufacturing (AM)
Paper coatings: Primers and topcoats; immobilization process
Foodstuffs: Water, vegetable oils, aroma solvents, fruit juices, baby food, liquid nutrition, liqueurs, syrups, purees, thickeners as stabilizing agents, gels, pudding, jellies, ketchup, mayonnaise, mustard, dairy products (such as yogurt, cream cheese, cheese spread, soft and hard cheese, curds, butter), emulsions, chocolate (melt), soft sweets, ice cream, chewing gum, dough, whisked egg, cappuccino foam, sausage meat, sauces containing meat chunks, jam containing fruit pieces, animal feed; bio-technological fluids; gel formation of hydrocolloids (e. g. of corn starch and gelatin); interfacial rheology (e. g. for emulsions, foams); rheology of powders and granulates: milk powder, cocoa powder, coffee powder, coffee whitener, flour, starch powder (e. g. as a binder), powdered sugar, granulated sugar, spices, animal feed (as granulates, pellets), grain, corn, rice, spray-dried products; influence of humidity (e. g. biscuits, cookies, crackers); food tribology (e. g. for creaminess); tack
Cosmetics, beauty care products: Perfume oils, emulsions (e. g. skin care, hair-dye),