.
knowledge of the laws of thought, and leave logic unused.20
§ 15. If now with our conviction that perception is the primary source of all evidence, and that only direct or indirect connection with it is absolute truth; and further, that the shortest way to this is always the surest, as every interposition of concepts means exposure to many deceptions; if, I say, we now turn with this conviction to mathematics, as it was established as a science by Euclid, and has remained as a whole to our own day, we cannot help regarding the method it adopts, as strange and indeed perverted. We ask that every logical proof shall be traced back to an origin in perception; but mathematics, on the contrary, is at great pains deliberately to throw away the evidence of perception which is peculiar to it, and always at hand, that it may substitute for it a logical demonstration. This must seem to us like the action of a man who cuts off his legs in order to go on crutches, or like that of the prince in the “Triumph der Empfindsamkeit” who flees from the beautiful reality of nature, to delight in a stage scene that imitates it. I must here refer to what I have said in the sixth chapter of the essay on the principle of sufficient reason, and take for granted that it is fresh and present in the memory of the reader; so that I may link my observations on to it without explaining again the difference between the mere ground of knowledge of a mathematical truth, which can be given logically, and the ground of being, which is the immediate connection of the parts of space and time, known only in perception. It is only insight into the ground of being that secures satisfaction and thorough knowledge. The mere ground of knowledge must always remain superficial; it can afford us indeed rational knowledge that a thing is as it is, but it cannot tell why it is so. Euclid chose the latter way to the obvious detriment of the science. For just at the beginning, for example, when he ought to show once for all how in a triangle the angles and sides reciprocally determine each other, and stand to each other in the relation of reason and consequent, in accordance with the form which the principle of sufficient reason has in pure space, and which there, as in every other sphere, always affords the necessity that a thing is as it is, because something quite different from it, is as it is; instead of in this way giving a thorough insight into the nature of the triangle, he sets up certain disconnected arbitrarily chosen propositions concerning the triangle, and gives a logical ground of knowledge of them, through a laborious logical demonstration, based upon the principle of contradiction. Instead of an exhaustive knowledge of these space-relations we therefore receive merely certain results of them, imparted to us at pleasure, and in fact we are very much in the position of a man to whom the different effects of an ingenious machine are shown, but from whom its inner connection and construction are withheld. We are compelled by the principle of contradiction to admit that what Euclid demonstrates is true, but we do not comprehend why it is so. We have therefore almost the same uncomfortable feeling that we experience after a juggling trick, and, in fact, most of Euclid's demonstrations are remarkably like such feats. The truth almost always enters by the back door, for it manifests itself per accidens through some contingent circumstance. Often a reductio ad absurdum shuts all the doors one after another, until only one is left through which we are therefore compelled to enter. Often, as in the proposition of Pythagoras, lines are drawn, we don't know why, and it afterwards appears that they were traps which close unexpectedly and take prisoner the assent of the astonished learner, who must now admit what remains wholly inconceivable in its inner connection, so much so, that he may study the whole of Euclid through and through without gaining a real insight into the laws of space-relations, but instead of them he only learns by heart certain results which follow from them. This specially empirical and unscientific knowledge is like that of the doctor who knows both the disease and the cure for it, but does not know the connection between them. But all this is the necessary consequence if we capriciously reject the special kind of proof and evidence of one species of knowledge, and forcibly introduce in its stead a kind which is quite foreign to its nature. However, in other respects the manner in which this has been accomplished by Euclid deserves all the praise which has been bestowed on him through so many centuries, and which has been carried so far that his method of treating mathematics has been set up as the pattern of all scientific exposition. Men tried indeed to model all the sciences after it, but later they gave up the attempt without quite knowing why. Yet in our eyes this method of Euclid in mathematics can appear only as a very brilliant piece of perversity. But when a great error in life or in science has been intentionally and methodically carried out with universal applause, it is always possible to discover its source in the philosophy which prevailed at the time. The Eleatics first brought out the difference, and indeed often the conflict, that exists between what is perceived, φαινομενον,21 and what is thought, νουμενον, and used it in many ways in their philosophical epigrams, and also in sophisms. They were followed later by the Megarics, the Dialecticians, the Sophists, the New-Academy, and the Sceptics; these drew attention to the illusion, that is to say, to the deception of the senses, or rather of the understanding which transforms the data of the senses into perception, and which often causes us to see things to which the reason unhesitatingly denies reality; for example, a stick broken in water, and such like. It came to be known that sense-perception was not to be trusted unconditionally, and it was therefore hastily concluded that only rational, logical thought could establish truth; although Plato (in the Parmenides), the Megarics, Pyrrho, and the New-Academy, showed by examples (in the manner which was afterwards adopted by Sextus Empiricus) how syllogisms and concepts were also sometimes misleading, and indeed produced paralogisms and sophisms which arise much more easily and are far harder to explain than the illusion of sense-perception. However, this rationalism, which arose in opposition to empiricism, kept the upper hand, and Euclid constructed the science of mathematics in accordance with it. He was compelled by necessity to found the axioms upon evidence of perception (φαινομενον), but all the rest he based upon reasoning (νουμενον). His method reigned supreme through all the succeeding centuries, and it could not but do so as long as pure intuition or perception, a priori, was not distinguished from empirical perception. Certain passages from the works of Proclus, the commentator of Euclid, which Kepler translated into Latin in his book, “De Harmonia Mundi,” seem to show that he fully recognised this distinction. But Proclus did not attach enough importance to the matter; he merely mentioned it by the way, so that he remained unnoticed and accomplished nothing. Therefore, not till two thousand years later will the doctrine of Kant, which is destined to make such great changes in all the knowledge, thought, and action of European nations, produce this change in mathematics also. For it is only after we have learned from this great man that the intuitions or perceptions of space and time are quite different from empirical perceptions, entirely independent of any impression of the senses, conditioning it, not conditioned by it, i.e., are a priori, and therefore are not exposed to the illusions of sense; only after we have learned this, I say, can we comprehend that Euclid's logical method of treating mathematics is a useless precaution, a crutch for sound legs, that it is like a wanderer who during the night mistakes a bright, firm road for water, and carefully avoiding it, toils over the broken ground beside it, content to keep from point to point along the edge of the supposed water. Only now can we affirm with certainty that what presents itself to us as necessary in the perception of a figure, does not come from the figure on the paper, which is perhaps very defectively drawn, nor from the abstract concept under which we think it, but immediately from the form of all knowledge of which we are conscious a priori. This is always the principle of sufficient reason; here as the form of perception, i.e., space, it is the principle of the ground of being, the evidence and validity of which is, however, just as great and as immediate as that of the principle of the ground of knowing, i.e., logical certainty. Thus we need not and ought not to leave the peculiar province of mathematics in order to put our trust only in logical proof, and seek to authenticate mathematics in a sphere which is quite foreign to it, that of concepts. If we confine ourselves to the ground peculiar to mathematics, we gain the great advantage that in it the rational knowledge that something is, is one with the knowledge why it is so, whereas the method of Euclid entirely separates these two, and lets us know only the first, not the second. Aristotle says admirably in the Analyt., post. i. 27: “Ακριβεστερα δ᾽ επιστημη επιστημης και προτερα, ἡτε του ὁτι και του διοτι ἡ αυτη, αλλα μη χωρις του ὁτι, της του διοτι” (Subtilior autem et praestantior ea est scientia, quâ