Мыши. Анастасия Красичкова
помощи специальных лекарственных препаратов или специальной световой терапии.
Недавно ученым удалось расшифровать генетический код мыши. Этот шаг должен пролить свет на загадки биологии человека. Установлено, что геном мыши имеет приблизительно ту же длину, что и человеческий, и включает в себя около 3 миллиардов нуклеотидов.
Геном представляет собой совокупность ДНК. Часть последовательности цепочки отвечает за структурные гены, функции других областей генома пока неизвестны.
Ученые заинтересовались геномом мыши по ряду причин. Одной из них является желание провести сравнительный анализ геномов мыши и человека, в частности продолжительности последовательности ДНК, вовлеченной в регуляцию активности генов.
Это исследование позволит выяснить, почему течение заболеваний, в частности рака, у мышей и людей различно, а в дальнейшем поможет в разработке более эффективных способов лечения.
В США ученые из Гарвардской медицинской школы вывели новую линию лабораторных мышей. Они мельче обычных приблизительно на 30%, а размеры их клеток также уступают на треть размерам клеток обычных мышей. При этом клетки делятся с обычной частотой.
Лабораторные мыши давно используются учеными для изучения экспериментальных моделей различных заболеваний человека. Однако мышиную модель такой распространенной наследственной болезни, как синдром Дауна, не удавалось получить в течение довольно долгого времени. И лишь недавно ученые смогли вывести мышь с тремя хромосомами, аналогичными двадцать первой хромосоме человека. Это животное может стать уникальной моделью для детального изучения генов, играющих ключевую роль в формировании черепно-лицевых уродств у человека.
Мыши с синдромом Дауна значительно отличаются от своих здоровых собратьев наличием целого комплекса аномалий строения черепа. Ученые отмечают, что деформации черепа у мышей с синдромом Дауна наблюдаются в тех же костях, что и у людей с этим заболеванием. По мнению исследователей, возможно довольно точно изучить развитие этого человеческого заболевания на лабораторных животных.
Еще один интересный эксперимент на лабораторных мышах провел доктор Гюнтер Гросс из Центра нейросетевых исследований при университете Северного Техаса. Из клеток мышиных эмбрионов была выращена живая нейронная сеть. Затем искусственный мозг поместили на сетку электродов, подключенных к персональному компьютеру. Далее при воздействии на полученный прибор каких-либо отравляющих веществ наблюдалось мгновенное изменение состояния клеток, что свидетельствовало о надвигающейся опасности.
Основной сферой применения разработки станет контроль за состоянием окружающей среды в условиях возможного использования химического или биологического оружия. По сравнению с традиционными способами выявления вредных веществ живая нейронная сеть позволяет получать результаты анализа практически мгновенно. Кроме того, детектор на основе мышиных эмбрионов может зарегистрировать