Rethinking Prototyping. Группа авторов

Rethinking Prototyping - Группа авторов


Скачать книгу
hope this collection of papers presents a range of insights at the cutting edge of the fields in addressing these questions and thank all participants for their contributions.

      C. Gengnagel, University of the Arts, Berlin

      A. Kilian, Princeton University, Princeton

      J. Nembrini, University of the Arts, Berlin

      Physical and Numerical Prototyping for Integrated Bending and Form-Active Textile Hybrid Structures

      Sean Ahlquist, Julian Lienhardt, Jan Knippers and Achim Menges

      1 Introduction

      This paper describes research for the development and implementation of a functionally and structurally intricate textile hybrid architecture, entitled M1, built in Monthoiron, France as part of the La Tour de l’Architecte complex. The term textile hybrid stands for the mutual exchange of structural action between bending- and form-active systems based on textile material behaviour. The implementation of such a structural logic is critical to this particular project as its presence is minimally impactful to the site, which houses a historically protected, and decrepit stone tower from the fifteenth century’s, as shown in Fig.1. The design by Leonardo da Vinci employed an innovative buttressing system to structure the tower without a significant foundation. The buttresses have since been scavenged from the site, though the M1 structure seeks a minimal footprint to protect areas where traces of the original buttressing structure still exist.

      To explore the complexities for minimal site imposition, lightweight material deployment and spatial differentiation, a set of multi-scalar and multi-modal prototyping procedures are developed. In both physical and numerical simulation, data towards eventual full-scale implementation is cumulatively compiled and calibrated, interleaving aspects of topology, material specification, force distribution and geometry. This paper defines prototyping as the interplay between modes of design in physical form-finding, approximated simulation through spring-based methods, and finite element analysis to form, articulate and materialise the textile hybrid structure. A particular feature in the exchange between and within these modes of design is the consideration of geometric input as a critical variable in the form-finding of bending-active behaviour.

      Sean Ahlquist

      University of Michigan, Taubman College of Architecture and Urban Planning, Ann Arbor, USA

      Julian Lienhardt, Jan Knippers

      University of Stuttgart, Institute for Building Structures and Structural Design, Stuttgart, Germany

      Achim Menges

      University of Stuttgart, Institute for Computational Design, Stuttgart, Germany

Ahlquist_Fig. 01.jpg

      Fig. 1 Stone Tower and M1 Textile Hybrid at La Tour de l’Architecte, Monthoiron, France (Photos and drawings provided by Christian Armbruster, 2011; Ahlquist and Lienhard, 2012)

      2 Multi-Hierarchical Textile Hybrid

      The M1 textile hybrid project is formed via a multi-hierarchical arrangement of glass-fibre reinforced polymer (GFRP) rods of varying cross-sectional dimensions, which are structurally integrated with Polyester PVC membranes and polyamide-based textiles. The primary structure, in Fig. 2a, is formed of a series of interleaved loops emerging from only three foundations at the boundary. The meta-scale bending-active structure morphs between gridshell-like moments and free-spans stabilized by the tensile membranes. A secondary system (Fig. 2b) provides additional support through a series of interconnected cells embedded within the longest spanning region of the structure. Working to disintegrate the homogeneous nature of the textile membrane, the cells are differentiated in their form and orientation. The levels of hierarchy coalesce to form a clear span of up to eight meters with a total structure weighing only 60kg, while simultaneously generating variation in all scales of the spatial architecture.

      Such articulation in behaviour and geometry is arrived at through an intricate exchange between various modes of form-finding. While the form-finding of tensile membrane structures considers stress harmoniously as an input variable, the form-finding of bending-active structures commonly results in varying stress distributions based on a comparatively large number of geometric and mechanical input variables. Therefore, the process of form-finding in the development of bending-active and, furthermore, textile hybrid structures eschews the consideration of structural optimisation. Aligning all input variables to form a functioning equilibrium, which satisfies both mechanical behaviour and contextual constraints, becomes the challenge within the form-finding processes and overall design framework. Due to this unique combination of freedom and complexity, it is shown through this research that a single computational technique alone does not offer the necessary flexibility and insight for developing textile hybrid structures. Rather, the combination and integration of multiple modes and techniques of design into a structured framework is shown to be necessary for the exploration and rationalization of complex textile hybrid structures.

Ahlquist_Fig. 02.jpg

      Fig. 2 Multi-hierarchical textile hybrid system (Ahlquist and Lienhard, 2012)

      These modes of design, in prototyping through form-finding, include physical models, spring-based computational studies and finite element analysis. Via physical experiments, specifications of topology and approximations of geometry are derived. Through spring-based modelling, also referred to as mass-spring methods or particle systems, variation is generated in the interactions between bending resistance and tensile forces (Ahlquist et al. 2013). In finite element analysis, fixed topological arrangements are inputs for exploration of specific mechanical relationships, force equilibria and further structural investigations (Lienhard et al. 2012). Each avenue serves to advance and articulate design aspects of the textile hybrid while also establishing the degree of fidelity towards the overall design framework.

      3 Prototyping Framework for Textile Hybrid Systems

      For designing a system formed of structural action, it can be decomposed into parameters of topology, structural forces, and materiality. Fig. 3 unravels these groups of parameters, as they would be addressed within a spring-based modelling and simulation environment. Topology specifies the count, type and associations of all elements within the system. Force describes the primary internal stresses, which the system will undergo, in this case tensile, compressive and bending actions. Materiality defines input parameters relevant to a material’s structural performance, while also translating values for computational or scaled behaviour into specific material definitions for fabrication and assembly. By distinguishing these parameters, particular relationships can be explored and exploited in their influence to material behaviour, as it forms force-active spatial architectures (Ahlquist and Menges 2011). This research describes the relationship between these aspects of material behaviour and relevant modes of design in physical form-finding, spring-based numerical methods, and simulation using finite element analysis.

      3.1 Physical Form-Finding and Computational Means

      While physical form-finding provides agile means for studying relationships of materiality and structural action within a single model, there is a limitation for any such study to predict behaviour beyond its own specific arrangement and scale. With a homogeneous material description, bending-active behaviour is generally scale-able as long as the topological input is repeated (Levien 2009). To establish a vehicle for design search, an individual study must serve as a prototypical case, projecting a design space, which implies a new vocabulary for form, performance and generative means (Coyne 1990). When integrating textile behaviour into a bending-active system, the extensibility of any one prototypical constructional model becomes further limited as the structural and spatial performance of the textile shifts greatly between scales.

      While


Скачать книгу