Решаем задачи Python. Джеймс Девис
будет равна максимальной длине подпоследовательности, заканчивающейся в предыдущем элементе, плюс 1.
4. В конце алгоритма находим максимальное значение в списке длин и восстанавливаем саму подпоследовательность.
Давайте реализуем этот алгоритм на Python:
```python
def find_max_non_increasing_subsequence_with_limit(nums, k):
n = len(nums)
# Создаем список для хранения длин наибольших невозрастающих подпоследовательностей
lengths = [1] * n
# Заполняем список длин
for i in range(1, n):
for j in range(i):
if nums[i] <= nums[j] and nums[j] – nums[i] <= k:
lengths[i] = max(lengths[i], lengths[j] + 1)
# Находим максимальную длину подпоследовательности
max_length = max(lengths)
# Восстанавливаем саму подпоследовательность
subsequence = []
last_index = lengths.index(max_length)
subsequence.append(nums[last_index])
for i in range(last_index – 1, -1, -1):
if nums[last_index] – nums[i] <= k and lengths[i] == max_length – 1:
subsequence.append(nums[i])
max_length -= 1
last_index = i
return subsequence[::-1] # Возвращаем подпоследовательность в обратном порядке
# Пример использования
nums = [5, 3, 8, 2, 9, 1, 6]
k = 3
result = find_max_non_increasing_subsequence_with_limit(nums, k)
print("Наибольшая невозрастающая подпоследовательность с разницей не более", k, ":", result)
```
Этот код найдет и выведет наибольшую невозрастающую подпоследовательность в списке чисел `[5, 3, 8, 2, 9, 1, 6]`, где разница между соседними элементами не превышает 3.
Работа с текстом и данными
Пояснения к коду:
1. Определение функции `find_max_non_increasing_subsequence_with_limit`:
– Эта функция принимает список чисел `nums` и число `k`, которое ограничивает разницу между соседними элементами подпоследовательности. Она возвращает наибольшую невозрастающую подпоследовательность с разницей между соседними элементами не более `k`.
2. Создание списка длин подпоследовательностей:
– В начале функции создается список `lengths` длиной, равной длине исходного списка `nums`, заполненный единицами. Этот список будет содержать длины наибольших невозрастающих подпоследовательностей, заканчивающихся в каждом элементе исходного списка.
3. Заполнение списка длин:
– Далее происходит двойной цикл, где для каждого элемента `nums[i]` проверяется, какой максимальной длины может быть наибольшая невозрастающая подпоследовательность, заканчивающаяся в этом элементе и удовлетворяющая ограничению на разницу между соседними элементами. Это делается путем сравнения элемента `nums[i]` с каждым предыдущим элементом `nums[j]` (где `j < i`). Если разница между `nums[i]` и `nums[j]` не превышает `k`, и `nums[i]` меньше или равен `nums[j]`, то длина подпоследовательности, заканчивающейся в `nums[i]`, увеличивается на 1.
4. Нахождение максимальной длины:
– После заполнения списка `lengths` находим максимальное значение в этом списке, которое будет длиной наибольшей невозрастающей подпоследовательности с ограничением на разницу между соседними элементами.
5. Восстановление подпоследовательности:
– Для восстановления самой подпоследовательности начиная с элемента с максимальной длиной, мы