Концепции и технологии цифровизации машиностроительного предприятия. Учебное пособие. Павел Ведмидь
на протяжении всего жизненного цикла изделия, чтобы проводить инженерный анализ, прогнозировать и оптимизировать работу изделия или производственной системы, прежде чем инвестировать в физические прототипы и ресурсы [8].
Благодаря мультифизическому моделированию, аналитике данных и машинному обучению цифровые двойники могут демонстрировать влияние изменений конструкции, различных сценариев использования, условий окружающей среды и других факторов на изделие или процесс и избавляют от необходимости изготовления физических прототипов. Это позволяет сократить время разработки и повысить качество получившегося в результате изделия или процесса.
Чтобы обеспечить точное моделирование на протяжении всего жизненного цикла изделия или его производства, цифровые двойники используют данные с датчиков, установленных на физических объектах, чтобы фиксировать производительность объекта в реальном времени, условия работы и изменения с течением времени. Используя эти данные, цифровые двойники совершенствуются и постоянно обновляются в соответствии с изменениями физического аналога на протяжении жизненного цикла изделия. Таким образом, возникает замкнутая обратная связь в виртуальной среде, которая позволяет компаниям постоянно оптимизировать свои изделия, производство и повышать производительность с минимальными затратами.
Область применения цифрового двойника зависит от того, на каком этапе жизненного цикла изделия происходит моделирование. Можно выделить 4 типа цифровых двойников: двойник изделия, двойник производства и двойник процесса, цифровой двойник эксплуатации. Видение компании Сименс показано на рис. 1.5
Цифровых двойников может быть сколь угодно много, они создаются под задачу и имеют детализацию, необходимую для ее решения.
Рис. 1.5. Цифровые двойники (Видение компании Сименс)
Цифровые двойники изделия
Цифровые двойники могут использоваться для виртуальной проверки характеристик изделия. Они также показывают, каким образом изделия функционируют в реальном мире. Этот цифровой двойник изделия обеспечивает связь между виртуальным и физическим миром. Такая связь позволяет проводить разные типы анализа, чтобы понять, как изделие будет вести себя в разных условиях. По результатам анализа можно внести изменения в виртуальную модель, чтобы следующее физическое изделие полностью соответствовало необходимым характеристикам. Неважно, насколько сложна система или материалы – цифровые двойники изделия помогают успешно преодолевать эти сложности и принимать самые оптимальные решения. Больше не нужно создавать множество физических прототипов, сокращается срок разработки, повышается качество итогового изделия. Кроме того, при наличии цифрового двойника можно гораздо быстрее отреагировать на замечания заказчиков.
Цифровые двойники изделий можно разделить на подтипы [8]: двойники-прототипы (Digital Twin Prototype, DTP), цифровые двойники-экземпляры (Digital