Живи долго! Научный подход к долгой молодости и здоровью. Майкл Грегер
and sleep in human glucose regulation. Endocr Rev. 1997;18(5):716–38. https://pubmed.ncbi.nlm.nih.gov/9331550/
834
Bandín C, Scheer FA, Luque AJ, et al. Meal timing affects glucose tolerance, substrate oxidation and circadian-related variables: a randomized, crossover trial. Int J Obes (Lond). 2015;39(5):828–33. https://pubmed.ncbi.nlm.nih.gov/25311083/
835
Gibbs M, Harrington D, Starkey S, Williams P, Hampton S. Diurnal postprandial responses to low and high glycaemic index mixed meals. Clin Nutr. 2014;33(5):889–94. https://pubmed.ncbi.nlm.nih.gov/24135087/
836
3,2 км/ч. –
837
Colberg SR, Zarrabi L, Bennington L, et al. Postprandial walking is better for lowering the glycemic effect of dinner than pre-dinner exercise in type 2 diabetic individuals. J Am Med Dir Assoc. 2009;10(6):394–7. https://pubmed.ncbi.nlm.nih.gov/19560716/
838
Haxhi J, Scotto di Palumbo A, Sacchetti M. Exercising for metabolic control: is timing important? Ann Nutr Metab. 2013;62(1):14–25. https://pubmed.ncbi.nlm.nih.gov/23208206/
839
Reynolds AN, Mann JI, Williams S, Venn BJ. Advice to walk after meals is more effective for lowering postprandial glycaemia in type 2 diabetes mellitus than advice that does not specify timing: a randomised crossover study. Diabetologia. 2016;59(12):2572–8. https://pubmed.ncbi.nlm.nih.gov/27747394/
840
Rahmadi A, Steiner N, Münch G. Advanced glycation endproducts as gerontotoxins and biomarkers for carbonyl-based degenerative processes in Alzheimer’s disease. Clin Chem Lab Med. 2011;49(3):385–91. https://pubmed.ncbi.nlm.nih.gov/21275816/
841
Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/
842
Uribarri J, He JC. The low AGE diet: a neglected aspect of clinical nephrology practice? Nephron. 2015;130(1):48–53. https://pubmed.ncbi.nlm.nih.gov/25871778/
843
Yamagishi S, Nakamura K, Matsui T, Inoue H, Takeuchi M. Oral administration of AST-120 (Kremezin) is a promising therapeutic strategy for advanced glycation end product (AGE)-related disorders. Med Hypotheses. 2007;69(3):666–8. https://pubmed.ncbi.nlm.nih.gov/17331665/
844
MIMS. Kremezin full prescribing information, dosage & side effects. https://www.mims.com/philippines/drug/info/kremezin?type=full. Accessed December 26, 2022.; https://www.mims.com/philippines/drug/info/kremezin?type=full
845
Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/
846
Cerami C, Founds H, Nicholl I, et al. Tobacco smoke is a source of toxic reactive glycation products. Proc Natl Acad Sci USA. 1997;94(25):13915–20. https://pubmed.ncbi.nlm.nih.gov/9391127/
847
Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/
848
Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/
849
Kenyon C. The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos Trans R Soc Lond B Biol Sci. 2011;366(1561):9–16. https://pubmed.ncbi.nlm.nih.gov/21115525/
850
Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993;366(6454):461–4. https://pubmed.ncbi.nlm.nih.gov/8247153/
851
Kenyon C. The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos Trans R Soc Lond B Biol Sci. 2011;366(1561):9–16. https://pubmed.ncbi.nlm.nih.gov/21115525/
852
Partridge L, Harvey PH. Gerontology. Methuselah among nematodes. Nature. 1993;366(6454):404–5. https://pubmed.ncbi.nlm.nih.gov/8247143/
853
Мрачный жнец – образ смерти. –
854
Coffer P. OutFOXing the grim reaper: novel mechanisms regulating longevity by Forkhead transcription factors. Sci STKE. 2003;2003(201):PE39. https://pubmed.ncbi.nlm.nih.gov/14506287/
855
Suh Y, Atzmon G, Cho MO, et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci U S A. 2008;105(9):3438–42. https://pubmed.ncbi.nlm.nih.gov/18316725/
856
Kenyon C. The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos Trans R Soc Lond B Biol Sci. 2011;366(1561):9–16. https://pubmed.ncbi.nlm.nih.gov/21115525/
857
Laron Z, Kauli R, Lapkina L, Werner H. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome. Mutat Res Rev Mutat Res. 2017;772:123–33. https://pubmed.ncbi.nlm.nih.gov/28528685/
858
Vitale G, Pellegrino G, Vollery M, Hofland LJ. Role of IGF-1 system in the modulation of longevity: controversies and new insights from a centenarians’ perspective. Front Endocrinol. 2019;10:27. https://pubmed.ncbi.nlm.nih.gov/30774624/
859
Kenyon C. The plasticity of aging: insights from long-lived mutants. Cell. 2005;120(4):449–60. https://pubmed.ncbi.nlm.nih.gov/15734678/
860
Junnila RK, List EO, Berryman DE, Murrey JW, Kopchick JJ. The GH/IGF-1 axis in ageing and longevity. Nat Rev Endocrinol. 2013;9(6):366–76. https://pubmed.ncbi.nlm.nih.gov/23591370/
861
Vitale G, Barbieri M, Kamenetskaya M, Paolisso G. GH/IGF-I/insulin system in centenarians. Mech Ageing Dev. 2017;165(Pt B):107–14. https://pubmed.ncbi.nlm.nih.gov/27932301/
862
Vitale G, Brugts MP, Ogliari G, et al. Low circulating IGF-I bioactivity is associated with human longevity: findings in centenarians’ offspring. Aging (Albany NY). 2012;4(9):580–9. https://pubmed.ncbi.nlm.nih.gov/22983440/
863
Vitale G, Barbieri M, Kamenetskaya M, Paolisso G. GH/IGF-I/insulin system in centenarians. Mech Ageing Dev. 2017;165(Pt B):107–14. https://pubmed.ncbi.nlm.nih.gov/27932301/
864
Pawlikowska L, Hu D, Huntsman S, et al. Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell. 2009;8(4):460–72. https://pubmed.ncbi.nlm.nih.gov/19489743/
865
Ben-Avraham D, Govindaraju DR, Budagov T, et al. The GH receptor exon 3 deletion is a marker of male-specific exceptional longevity associated with increased GH sensitivity and taller stature. Sci Adv. 2017;3(6):e1602025. https://pubmed.ncbi.nlm.nih.gov/28630896/
866
Teumer A, Qi Q, Nethander M, et al. Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. Aging Cell. 2016;15(5):811–24. https://pubmed.ncbi.nlm.nih.gov/27329260/
867
Milman S, Atzmon G, Huffman DM, et al. Low insulin-like growth factor-1 level predicts survival in humans with exceptional longevity. Aging Cell. 2014;13(4):769–71. https://pubmed.ncbi.nlm.nih.gov/24618355/
868
van der Spoel E, Rozing MP, Houwing-Duistermaat JJ, et al. Association analysis of insulin-like growth factor-1 axis parameters with survival and functional status in nonagenarians of the Leiden Longevity Study. Aging (Albany NY). 2015;7(11):956–63. https://pubmed.ncbi.nlm.nih.gov/26568155/
869
Suh Y, Atzmon G, Cho MO, et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci U S A. 2008;105(9):3438–42. https://pubmed.ncbi.nlm.nih.gov/18316725/
870
Tazearslan C, Huang J,