Алгоритмы машинного обучения: базовый курс. Тайлер Венс
структуры или закономерности.
Одними из самых популярных и широко используемых алгоритмов кластеризации являются K-means и DBSCAN. Оба алгоритма имеют свои особенности и применяются в разных ситуациях, в зависимости от структуры данных.
Алгоритм K-means
K-means – это простой, но мощный алгоритм, который хорошо работает, когда данные имеют явно выраженные кластеры с похожими размерами и формой. В процессе работы K-means нужно заранее указать число кластеров, которое модель должна найти в данных. Идея алгоритма заключается в том, чтобы минимизировать внутрикластерное расстояние между объектами, при этом максимизируя расстояние между кластерами.
Процесс работы алгоритма можно представить как многократное распределение объектов по кластерам и пересчёт центроидов (средних значений) каждого кластера. Начинается всё с того, что случайным образом выбираются начальные центроиды. Затем каждый объект данных назначается к ближайшему центроиду. После этого алгоритм пересчитывает новые центроиды, исходя из данных, которые к ним были отнесены. Этот процесс повторяется до тех пор, пока центроиды не перестанут изменяться, или изменения будут незначительными.
Однако есть несколько ограничений у K-means. Одним из них является необходимость заранее знать количество кластеров, что не всегда возможно, особенно если структура данных неочевидна. Также алгоритм чувствителен к начальному выбору центроидов, что может повлиять на итоговый результат, особенно в случае, когда данные сильно перекошены или содержат выбросы.
Алгоритм DBSCAN
В отличие от K-means, алгоритм DBSCAN (Density-Based Spatial Clustering of Applications with Noise) не требует указания числа кластеров заранее. Этот алгоритм основан на плотности объектов в пространстве. DBSCAN пытается группировать объекты, которые находятся в областях с высокой плотностью, и отделяет их от областей с низкой плотностью, которые могут считаться выбросами.
Одним из сильных преимуществ DBSCAN является его способность обнаруживать кластеры произвольной формы, в то время как K-means склонен работать лучше только с кластерами, имеющими круглую или сферическую форму. Алгоритм также эффективно справляется с выбросами, которые он не включает в кластеры, что позволяет избежать искажения результатов, как это может случиться в K-means, если выбросы слишком сильно влияют на расчёт центроидов.
Однако, несмотря на свою гибкость, DBSCAN также имеет некоторые ограничения. Например, он чувствителен к параметрам, которые нужно установить – радиусу окрестности для поиска соседей и минимальному числу объектов, которое должно быть в окрестности, чтобы её можно было считать кластером. Выбор этих параметров может сильно повлиять на результаты работы алгоритма.
Когда использовать какой алгоритм?
Выбор между K-means и DBSCAN зависит от характера данных. Если у вас есть данные, которые можно разделить на кластеры с ясными центроидами и одинаковыми размерами, то K-means может быть лучшим выбором. Этот алгоритм также подойдёт, если вы точно знаете количество кластеров и хотите быстро получить решение.
Однако