Человек и ноосфера. Н. Н. Моисеев
которая существует, как мы это видели, на множестве функционалов [Wi], то есть на множестве законов физики, которые никто нарушить не может.
Законы живого мира, не сводимые к законам физики, выполняются не столь жестоко, они могут нарушиться, но за их нарушение живое существо платит жизнью. В живом мире вступают в действие адаптационные механизмы, требующие непрерывной «переранжировки» элементов множества функционалов [Φi]. Живой организм, как это показал великий русский физиолог И. П. Павлов, приобретает систему рефлексов – условных и безусловных. Это и есть результат «установившейся» ранжировки, которая при изменившейся ситуации может оказаться трагичной.
Используя язык многокритериальной оптимизации, который был введен в этом параграфе, я могу сказать, что выработка рефлексов проводит необходимую ранжировку функционалов [Ф]] и устанавливает алгоритмы их локальной оптимизации. (В теории управления системы, обладающие четким алгоритмом обратной связи, называются рефлексными.)
В этой главе я выделил два класса механизмов развития: адаптационные и бифуркационные. Выработка рефлексов – это результат действия адаптационных механизмов. Любое постепенное изменение тех или иных свойств развивающихся систем (в том числе правила поведения отдельных членов популяции), происходящее под действием естественного отбора, – это тоже результат действия подобных механизмов. И каждый раз такие механизмы отыскивают некоторый локальный минимум. (Этот факт позволяет дать еще одно определение адаптационных механизмов на языке теории исследования операций: механизмы, реализующие алгоритмы поиска локальных экстремумов без прогноза изменений внешней среды, то есть лишь по информации об окружающей обстановке, полученной в данный момент, мы и будем называть адаптационными.)
Ракурс, который нам дает теория исследования операций в изучении общего эволюционного процесса, позволяет по-новому увидеть и роль бифуркационных механизмов в развитии материи. Используя язык этой теории, мы могли бы сказать, что бифуркационные механизмы в отличие от механизмов адаптационных осуществляют нелокальную оптимизацию.
То, что начинает происходить в природе, когда вступает в действие бифуркационный механизм, чем-то похоже на ту ситуацию, в которой вычислитель, работая с диалоговой системой оптимизационных расчетов, время от времени при решении сложной задачи отступает от использования локальных алгоритмов типа наискорейшего спуска.
Так он поступает всякий раз, когда используемый алгоритм перестает уже совершенствовать систему, когда его потенциальные возможности оказываются исчерпанными. В этом случае опытный вычислитель начинает использовать какой-либо неэффективный, но зато нелокальный метод поиска.
Изучение алгоритмов развития живых систем показывает, что здесь существенно изменяется и роль принципа минимума диссипации энергии по сравнению с его ролью в процессах развития неживой природы.
В