Catholic Churchmen in Science. First Series. James Joseph Walsh

Catholic Churchmen in Science. First Series - James Joseph Walsh


Скачать книгу
the beginning of the twentieth century, with some of the supposed foundations of modern chemistry crumbling to pieces under the influences of the peculiarly active light thrown upon older chemical theories by the discovery of radium and the radio-active elements generally, there is a reawakening of interest in some of the old-time chemical observers whose work used to be laughed at as so unscientific and whose theory of the transmutation of elements into one another was considered so absurd. The idea that it would be impossible under any circumstances to convert one element into another belongs entirely to the nineteenth century. Even so distinguished a mind as that of Newton, in the preceding century, could not bring itself to acknowledge the modern supposition of the absurdity of metallic transformation, but, on the contrary, believed very firmly in this as a basic chemical principle and confessed that it might be expected to occur at any time. He had seen specimens of gold ores in connexion with metallic copper, and had concluded that this was a manifestation of the natural transformation of one of these yellow metals into the other.

      With the discovery that radium transforms itself into helium, and that indeed all the so-called radio-activities of the very heavy metals are probably due to a natural transmutation process constantly at work, the ideas of the older chemists cease entirely to be a subject for amusement. The physical chemists of the present day are very ready to admit that the old teaching of the absolute independence of something over seventy elements is no longer tenable, except as a working hypothesis. The doctrine of matter and form taught for so many centuries by the scholastic philosophers which proclaimed that all matter is composed of two principles, an underlying material substratum and a dynamic or informing principle, has now more acknowledged verisimilitude, or lies at least closer to the generally accepted ideas of the most progressive scientists, than it has at any time for the last two or three centuries. Not only the great physicists, but also the great chemists, are speculating along lines that suggest the existence of but one form of matter, modified according to the energies that it possesses under a varying physical and chemical environment. This is, after all, only a restatement in modern terms of the teaching of St. Thomas of Aquin in the thirteenth century.

      It is not surprising, then, that there should be a reawakening of interest in the lives of some of the men who, dominated by the earlier scholastic ideas and by the tradition of the possibility of finding the philosopher's stone, which would transmute the baser metals into the precious metals, devoted themselves with quite as much zeal as any modern chemist to the observation of chemical phenomena. One of the most interesting of these–indeed he might well be said to be the greatest of the alchemists–is the man whose only name that we know is that which appears on a series of manuscripts written in the High German dialect of the end of the fifteenth and the beginning of the sixteenth century. That name is Basil Valentine, and the writer, according to the best historical traditions, was a Benedictine monk. The name Basil Valentine may only have been a pseudonym, for it has been impossible to trace it among the records of the monasteries of the time. That the writer was a monk there seems to be no doubt, for his writings in manuscript and printed form began to have their vogue at a time when there was little likelihood of their being attributed to a monk unless an indubitable tradition connected them with some monastery.

      This Basil Valentine (to accept the only name we have), as we can judge very well from his writings, eminently deserves the designation of the last of the alchemists and the first of the chemists. There is practically a universal recognition of the fact now that he deserves also the title of Founder of Modern Chemistry, not only because of the value of the observations contained in his writings, but also because of the fact that they proved so suggestive to certain scientific geniuses during the century succeeding Valentine's life. Almost more than to have added to the precious heritage of knowledge for mankind is it a boon for a scientific observer to have awakened the spirit of observation in others and to be the founder of a new school of thought. This Basil Valentine undoubtedly did.

      Besides, his work furnishes evidence that the investigating spirit was abroad just when it is usually supposed not to have been, for the Thuringian monk surely did not do all his investigating alone, but must have received as well as given many a suggestion to his contemporaries.

      In the history of education there are two commonplaces that are appealed to oftener than any other as the sources of material with regard to the influence of the Catholic Church on education during the centuries preceding the Reformation. These are the supposed idleness of the monks, and the foolish belief in the transmutation of metals and the search for the philosopher's stone which dominated the minds of so many of the educated men of the time. It is in Germany especially that these two features of the pre-Reformation period are supposed to be best illustrated. In recent years, however, there has come quite a revolution in the feelings even of those outside of the Church with regard to the proper appreciation of the work of the monastic scholars of these earlier centuries. Even though some of them did dream golden dreams over their alembics, the love of knowledge meant more to them, as to the serious students of any age, than anything that might be made by it. As for their scientific beliefs, if there can be a conversion of one element into another, as seems true of radium, then the possibility of the transmutation of metals is not so absurd as, for a century or more, it has seemed; and it is not impossible that at some time even gold may be manufactured out of other metallic materials.

      Of course, a still worthier change of mind has come over the attitude of educators because of the growing sense of appreciation for the wonderful work of the monks of the Middle Ages, and even of those centuries that are supposed to show least of the influence of these groups of men who, forgetting material progress, devoted themselves to the preservation and the cultivation of the things of the spirit. The impression that would consider the pre-Reformation monks in Germany as unworthy of their high calling in the great mass is almost entirely without foundation. Obscure though the lives of most of them were, many of them rose above their environment in such a way as to make their work landmarks in the history of progress for all time.

      Because their discoveries are buried in the old Latin folios that are contained only in the best libraries, not often consulted by the modern scientist, it is usually thought that the scientific investigators of these centuries before the Reformation did no work that would be worth while considering in our present day. It is only some one who goes into this matter as a labor of love who will consider it worth his while to take the trouble seriously to consult these musty old tomes. Many a scholar, however, has found his labor well rewarded by the discovery of many an anticipation of modern science in these volumes so much neglected and where such treasure-trove is least expected. Professor Clifford Allbutt, the Regius Professor of physics at the University of Cambridge, in his address on "The Historical Relations of Medicine and Surgery Down to the End of the Sixteenth Century," which was delivered at the St. Louis Congress of Arts and Sciences during the Exposition in 1904, has shown how much that is supposed to be distinctly modern in medicine, and above all in surgery, was the subject of discussion at the French and Italian universities of the thirteenth century. William Salicet, for instance, who taught at the University of Bologna, published a large series of case histories, substituted the knife for the Arabic use of the cautery, described the danger of wounds of the neck, investigated the causes of the failure of healing by first intention, and sutured divided nerves. His pupil, Lanfranc, who taught later at the University of Paris, went farther than his master by distinguishing between venous and arterial hemorrhage, requiring digital compression for an hour to stop hemorrhage from the venae pulsatiles--the pulsating veins, as they were called–and if this failed because of the size of the vessel, suggesting the application of a ligature. Lanfranc's chapter on injuries to the head still remains a noteworthy book in surgery that establishes beyond a doubt how thoughtfully practical were these teachers in the medieval universities. It must be remembered that at this time all the teachers in universities, even those in the medical schools as well as those occupied with surgery, were clerics. Professor Allbutt calls attention over and over again to this fact, because it emphasizes the thoroughness of educational methods, in spite of the supposed difficulties that would lie in the way of an exclusively clerical teaching staff.

      In chemistry the advances made during the thirteenth, fourteenth, and fifteenth centuries were even more noteworthy than those in any other department of science. Albertus Magnus, who taught at Paris, wrote no less than sixteen treatises on chemical subjects, and, notwithstanding the


Скачать книгу