Science in Arcady. Allen Grant
shell behind as a mere empty windbag.
Naturally, the squirting cucumber knows its own business best, and is not without sufficient reasons of its own for this strange and, to some extent, unmannerly behaviour. By its queer trick of squirting, it manages to kill at least two birds with one stone. For, in the first place, the sudden elastic jump of the fruit frightens away browsing animals, such as goats and cattle. Those meditative ruminants are little accustomed to finding shrubs or plants take the aggressive against them; and when they see a fruit that quite literally flies in their faces of its own accord, they hesitate to attack the uncanny vine which bristles with such magical and almost miraculous defences. Moreover, the juice of the squirting cucumber is bitter and nauseous, and if it gets into the eyes or nostrils of man or beast, it impresses itself on the memory by stinging like red pepper. So the trick of squirting serves in a double way as a protection to the plant against the attacks of herbivorous animals and other enemies.
But that's not all. Even when no enemy is near, the ripe fruits at last drop off of themselves, and scatter their seeds elastically in every direction. This they do simply in order to disseminate their kind in new and unoccupied spots, where the seedlings will root and find an opening in life for themselves. Observe, indeed, that the very word 'disseminate' implies a general vague recognition of this principle of plant-life on the part of humanity. It means, etymologically, to scatter seed; and it points to the fact that everywhere in nature seeds are scattered broadcast, infinite pains being taken by the mother-plant for their general diffusion over wide areas of woodland, plain, or prairie.
Let us take as examples a single little set of instances, familiar to everybody, but far commoner in the world at large than the inhabitants of towns are at all aware of: I mean, the winged seeds, that fly about freely in the air by means of feathery hairs or gossamer, like thistle-down and dandelion. Of these winged types we have many hundred varieties in England alone. All the willow-herbs, for example, have such feathery seeds (or rather fruits) to help them on their way through life; and one kind, the beautiful pink rose-bay, flies about so readily, and over such wide spaces of open country, that the plant is known to farmers in America as fireweed, because it always springs up at once over whole square miles of charred and smoking soil after every devastating forest fire. It travels fast, for it travels like Ariel. In much the same way, the coltsfoot grows on all new English railway banks, because its winged seeds are wafted everywhere in myriads on the winds of March. All the willows and poplars have also winged seeds: so have the whole vast tribe of hawkweeds, groundsels, ragworts, thistles, fleabanes, cat's-ears, dandelions, and lettuces. Indeed, one may say roughly, there are very few plants of any size or importance in the economy of nature which don't deliberately provide, in one way or another, for the dispersal and dissemination of their fruits or seedlings.
Why is this? Why isn't the plant content just to let its grains or berries drop quietly on to the soil beneath, and there shift for themselves as best they may on their own resources?
The answer is a more profound one than you would at first imagine. Plants discovered the grand principle of the rotation of crops long before man did. The farmer now knows that if he sows wheat or turnips too many years running on the same plot, he 'exhausts the soil,' as we say—deprives it of certain special mineral or animal constituents needful for that particular crop, and makes the growth of the plant, therefore, feeble or even impossible. To avoid this misfortune, he lets the land lie fallow, or varies his crops from year to year according to a regular and deliberate cycle. Well, natural selection forced the same discovery upon the plants themselves long before the farmer had dreamed of its existence. For plants, being, in the strictest sense, 'rooted to the spot,' absolutely require that all their needs should be supplied quite locally. Hence, from the very beginning, those plants which scattered their seeds widest throve the best; while those which merely dropped them on the ground under their own shadow, and on soil exhausted by their own previous demands upon it, fared ill in the struggle for life against their more discursive competitors. The result has been that in the long run few species have survived, except those which in one way or another arranged beforehand for the dispersal of their seeds and fruits over fresh and unoccupied areas of plain or hillside.
I don't, of course, by any means intend to assert that seeds always do it by the simple device of wings or feathery projections. Every variety of plan or dodge or expedient has been adopted in turn to secure the self-same end; and provided only it succeeds in securing it, any variety of them all is equally satisfactory. One might parallel it with the case of hatching birds' eggs. Most birds sit upon their eggs themselves, and supply the necessary warmth from their own bodies. But any alternative plan that attains the same end does just as well. The felonious cuckoo drops her foundlings unawares in another bird's nest: the ostrich trusts her unhatched offspring to the heat of the burning desert sand: and the Australian brush-turkeys, with vicarious maternal instinct, collect great mounds of decaying and fermenting leaves and rubbish, in which they deposit their eggs to be artificially incubated, as it were, by the slow heat generated in the process of putrefaction. Just in the same way, we shall see in the case of seeds that any method of dispersion will serve the plant's purpose equally well, provided only it succeeds in carrying a few of the young seedlings to a proper place in which they may start fair at last in the struggle for existence.
As in the case of the fertilization of flowers, so in that of the dispersal of seeds, there are two main ways in which the work is effected—by animals and by wind-power. I will not insult the intelligence of the reader at the present time of day by telling him that pollen is usually transferred from blossom to blossom in one or other of these two chief ways—it is carried on the heads or bodies of bees and other honey-seeking insects, or else it is wafted on the wings of the wind to the sensitive surface of a sister-flower. So, too, seeds are for the most part either dispersed by animals or blown about by the breezes of heaven to new situations. These are the two most obvious means of locomotion provided by nature; and it is curious to see that they have both been utilized almost equally by plants, alike for their pollen and their seeds, just as they have been utilized by man for his own purposes on sea or land, in ship, or windmill, or pack-horse, or carriage.
There are two ways in which animals may be employed to disperse seeds—voluntarily and involuntarily. They may be compelled to carry them against their wills: or they may be bribed and cajoled and flattered into doing the plant's work for it in return for some substantial advantage or benefit the plant confers upon them. The first plan is the one adopted by burrs and cleavers. These adhesive fruits are like the man who buttonholes you and won't be shaken off: they are provided with little curved hooks or bent and barbed hairs which catch upon the wool of sheep, the coat of cattle, or the nether integuments of wayfaring humanity, and can't be got rid of without some little difficulty. Most of them, you will find on examination, belonged to confirmed hedgerow or woodside plants: they grow among bushes or low scrub, and thickets of gorse or bramble. Now, to such plants as these, it is obviously useful to have adhesive fruits and seeds: for when sheep or other animals get them caught in their coats, they carry them away to other bushy spots, and there, to get rid of the annoyance caused by the foreign body, scratch them off at once against some holly-bush or blackthorn. You may often find seeds of this type sticking on thorns as the nucleus of a little matted mass of wool, so left by the sheep in the very spots best adapted for the free growth of their vigorous seedlings.
Even among plants which trust to the involuntary services of animals in dispersing their seeds, a great many varieties of detail may be observed on close inspection. For example, in hound's-tongue and goose-grass, two of the best-known instances among our common English weeds, each little nut is covered with many small hooks, which make it catch on firmly by several points of attachment to passing animals. These are the kinds we human beings of either sex oftenest find clinging to our skirts or trousers after a walk in a rabbit-warren. But in herb-bennet and avens each nut has a single long awn, crooked near the middle with a very peculiar S-shaped joint, which effectually catches on to the wool or hair, but drops at the elbow after a short period of withering. Sometimes, too, the whole fruit is provided with prehensile hooks, while sometimes it is rather the individual seeds themselves that are so accommodated. Oddest of all is the plan followed by the common burdock. Here, an involucre or common cup-shaped receptacle of hooked bracts surrounds an entire head of purple tubular flowers, and each of these flowers produces in time a distinct fruit; but the hooked involucre contains the whole compound mass, and, being pulled