Нереальная реальность. Путешествие по квантовой петле. Карло Ровелли
id="n_13">
13
Краткая интересная работа об идеях Демокрита, помещающая их в контексте гуманизма: S. Martini. Democrito: filosofo della natura o filosofo dell’uomo? (Демокрит: философ природы или философ человека?) – Rome, Armando, 2002.
14
Платон. Соч.: В 4 т. Т. 2. – СПб., 2007. – С. 69. – Примеч. пер.
15
Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике: В 9 т. Т. 1. Современная наука о природе. Законы механики. – М.: Наука, 1965. – С. 23. – Примеч. пер.
16
Аристотель. О возникновении и уничтожении // Собр. соч.: В 4 т. Т. 3. – М., 1981. – С. 379. – Примеч. пер.
17
Недавно вышедшее хорошее изложение парадоксов Зенона с разъяснением их философского и математического значения: Vincenzo Fano. I paradossi di Zenone (Апории Зенона). – Rome, Carocci, 2012.
18
Математики говорят о сходящихся бесконечных суммах, или рядах. Например, бесконечная сумма 1/2 + 1/4 + 1/8 + 1/16 +… сходится к 1. Во времена Зенона не было представления о бесконечных сходящихся рядах. Их открыл Архимед несколькими столетиями позже и использовал для вычисления площадей. Ими активно пользовался Ньютон, но полной ясности с этими математическими объектами не было вплоть до работ Больцано и Вейерштрасса, выполненных в XIX столетии. Аристотель, однако, уже понимал, что это возможный способ ответа Зенону; введенное Аристотелем различие между актуальной бесконечностью и потенциальной бесконечностью уже содержит в себе ключевую идею: различие между отсутствием предела делимости и возможностью иметь нечто уже разделенным на бесконечное число частей.