EXTREMOPHILES as Astrobiological Models. Группа авторов
M., Moreno-Paz, M., García-Villadangos, M., Gómez-Ortiz, D., Blanco-López, Y. et al., Classification of modern and old Río Tinto sedimentary deposits through the bio-molecular record using a Life Marker Biochip: Implications for detecting Life on Mars. Astrobiology, 11, 29–44, 2011.
2.86. Pedersen, K., Exploration of deep intraterrestrial microbial life: Current perspectives. FEMS Microbiol. Lett., 185, 9–16, 2000.
2.87. Puente-Sánchez, F., Moreno-Paz, M., Rivas, L.A., Cruz-Gil, P., García-Villadangos, M., Gómez, M.J., Postigo, M., Garrido, P., González-Toril, E., Briones, C. et al., Deep subsurface sulfate reduction and methanogenesis in the Iberian Pyrite Belt revealed through geochemistry and molecular biomarkers. Geobiology, 12, 34–47, 2014.
2.88. Puente-Sánchez, F., Sánchez-Román, M., Amils, R., Parro, V., Tessaracoccus lapidicaptus sp. nov., a novel actinobacterium isolated from the deep subsurface of the Iberian Pyrite Belt (Huelva, Spain). Int. J. Syst. Evol. Microbiol., 64, 3546–3552, 2014.
2.89. Preston, L., Shuster, J., Fernández-Remolar, D., Banerjee, N., Osinski, G.R., Southam, G., The preservation and degradation of filamentous bacteria and biomolecules within iron oxide deposits at Rio Tinto, Spain. Geobiology, 9, 233–249, 2011.
2.90. Pronk, J.T., Bruyn, J.C., Bos, P., Kuenen, J.G., Anaerobic growth of Thiobacillus ferrooxidans. Appl. Environ. Microbiol., 58, 2227–2230, 1992.
2.91. Rawlings, D.E., Heavy metal mining using microbes. Annu. Rev. Microbiol., 56, 65–91, 2002.
2.92. Rawlings, D.E., Characteristics and adptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb. Cell Fact., 4, 13–28, 2005.
2.93. Rieder, R., Gellert, R., Anderson, R.C., Brückner, J., Clark, B.C., Dreibus, G., Economou, T., Klingelhöfer, G., Lugmair, G.W., Ming, D.W. et al., Chemistry of rocks and soils at Meridiani Planum from the alpha particle X-ray spectrometer. Science, 306, 1746–1749, 2004.
2.94. Sánchez-Andrea, I., Rodríguez, N., Amils, R., Sanz, J.L., Microbial diversity in anaerobic sediments at Río Tinto, a naturally acidic environment with a high heavy metal content. Appl. Environ. Microbiol., 77, 17, 6085–6093, 2011.
2.95. Sánchez-Andrea, I., Rojas-Ojeda, P., Amils, R., Sanz, J.L., Screening of anaerobic activities in sediments of an acidic environment: Tinto River. Extremophiles, 16, 829–839, 2012.
2.96. Sánchez-Andrea, I., Stams, A.J.M., Amils, R., Sanz, J.L., Enrichment and isolation of acido-philic sulfate-reducing bacteria from Tinto River sediments. Environ. Microbiol. Rep., 5, 5, 672–678, 2013.
2.97. Sánchez-Román, M., Fernández-Remolar, D., Amils, R., Sánchez-Navas, A., Schmid, T., San Martíon-Uriz, P., Rodríguez, N., McKenzie, J.A., Microbial mediated formation of Fe-carbonate minerals under extreme acidic conditions. Sci. Rep., 4, e4757, 2014.
2.98. Sand, W., Gehrke, T., Hallmann, R., Schippers, A., Sulfur chemistry, biofilm and the (in) direct attack mechanisms. A critical evaluation of bacterial leaching. Appl. Microbiol. Biotechnol., 43, 961–966, 1995.
2.99. Sand, W., Gehrke, T., Jozsa, P.G., Schippers, A., Biochemistry of bacterial leaching. Direct vs indirect bioleaching. Hydrometallurgy, 59, 159–175, 2001.
2.100. Sanz, J.L., Rodríguez, N., Díaz, E., Amils, R., Methanogenesis in the sediments of Río Tinto, an extreme acidic environment. Environ. Microbiol., 13, 8, 2336–2341, 2011.
2.101. Squyres, S.W., Grotzinger, J.P., Arvidson, R.E., Bell, J.F., III, Calvin, W., Christensen, P.R., Clark, B.C., Crisp, J.A., Farrand, W.H., Herkenhoff, K.E. et al., In situ evidence for an ancient aqueous environment in Meridiani Planum, Mars. Science, 306, 1709–1714, 2004.
2.102. Taconi, K.A., Zappi, M.E., French, W.T., Brown, L.R., Methanogenesis under acidic pH conditions in a semy-continuous reactor system. Bioresour. Technol., 99, 8075–8081, 2008.
2.103. Vizzioli, C., Bacterial diversity associated to the tidal area of Río Tinto. PhD thesis, Universidad Autónoma de Madrid, Spain, 2017.
2.104. Wächtershäuser, G., Groundworks for an evolutionary biochemistry: The iron Sulphur world. Prog. Biophys. Mol. Biol., 58, 85–201, 1992.
2.105. Webster, C.R., Mahaffy, P.R., Atreya, S.K., Flesch, G.J., Mischna, M.A., Meslin, P.-Y., Farley, K.A., Conrad, P.G., Christensen, L.E., Pavlov, A.A. et al., Mars methane detection and variability at Gale crater. Science, 347, 415–417, 2015.
2.106. Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B., Schink, B., Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature, 162, 834–836, 1993.
2.107. Wiegel, J., Ljungdahl, L.G., Demain, A.L., The importance of thermophilic bacteria in biotechnology. Crit. Rev. Biotechnol., 3, 39–108, 1985.
2.108. Woese, C.R. and Fox, G.E., Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc. Natl. Acad. Sci. USA, 77, 5088–5090, 1977.
2.109. Woese, C.R., Kandler, O., Wheelis, M.L., Toward a natural system of organisms: Proposal for the domains archaea, bacteria and eukarya. Proc. Natl. Acad. Sci. USA, 87, 4576–4579, 1990.
2.110. Yan, R., Kappler, A., Peiffer, S., Interference of nitrite with pyrite under acidic conditions: Implications for studies of chemolithotrophic denitrification. Environ. Sci. Technol., 49, 11403–11410, 2015.
2.111. Zhang, G., Dong, H., Xu, Z., Zhao, D., Zhang, C., Microbial diversity in ultra-high-pressure rocks and fluids from the Chinese Continental Scientific Drilling Project in China. Appl. Environ. Microbiol., 71, 3213–3227, 2005.
2.112. Zolotov, M. and Shock, E., Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at the Meridiani Planum, Mars. Geophys. Res. Lett., 32, L21203, 2005.
1 * Corresponding author: [email protected]
2 Ricardo Amils: https://www.researchgate.net/profile/Ricardo_Amils, http://www.cbm.uam.es/ramils, https://orcid.org/0000-0002-7560-1033
3 David Fernández-Remolar: https://www.researchgate.net/profile/David_Fernandez-Remolar, https://scholar.google.es/citations?user=NDpdhrIAAAAJ&hl=es, https://cab.academia.edu/DavidFernandezRemolar
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.