Clinical Pancreatology for Practising Gastroenterologists and Surgeons. Группа авторов
and shorter door to needle times. Despite numerous hurdles in the progress of experimental medicine for AP, there is now visible light at the end of the tunnel sufficient for this important aspect of AP research to pick up speed.
References
1 1 Mukherjee R, Nunes Q, Huang W, Sutton R. Precision medicine for acute pancreatitis: current status and future opportunities. Precis Clin Med 2019; 2(2):81–86.
2 2 Abu‐El‐Haija M, Gukovskaya AS, Andersen DK, et al. Accelerating the drug delivery pipeline for acute and chronic pancreatitis: summary of the Working Group on Drug Development and Trials in Acute Pancreatitis at the National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas 2018; 47(10):1185–1192.
3 3 Pavlidis P, Crichton S, Lemmich Smith J, et al. Improved outcome of severe acute pancreatitis in the intensive care unit. Crit Care Res Pract 2013; 2013:897107.
4 4 Skouras C, Hayes AJ, Williams L, et al. Early organ dysfunction affects long‐term survival in acute pancreatitis patients. HPB (Oxford) 2014; 16(9):789–796.
5 5 Leach SD, Modlin IM, Scheele GA, Gorelick FS. Intracellular activation of digestive zymogens in rat pancreatic acini. Stimulation by high doses of cholecystokinin. J Clin Invest 1991; 87(1):362–366.
6 6 Pandol SJ, Saluja AK, Imrie CW, Banks PA. Acute pancreatitis: bench to the bedside. Gastroenterology 2007; 132(3):1127–1151.
7 7 Petersen OH, Sutton R. Ca2+ signalling and pancreatitis: effects of alcohol, bile and coffee. Trends Pharmacol Sci 2006; 27(2):113–120.
8 8 Ward JB, Petersen OH, Jenkins SA, Sutton R. Is an elevated concentration of acinar cytosolic free ionised calcium the trigger for acute pancreatitis? Lancet 1995; 346(8981):1016–1019.
9 9 Criddle DN, Murphy J, Fistetto G, et al. Fatty acid ethyl esters cause pancreatic calcium toxicity via inositol trisphosphate receptors and loss of ATP synthesis. Gastoenterology 2006; 130(3):781–793.
10 10 Husain SZ, Prasad P, Grant WM, et al. The ryanodine receptor mediates early zymogen activation in pancreatitis. Proc Natl Acad Sci USA 2005; 102(40):14386–14391.
11 11 Raraty M, Ward J, Erdemli G, et al. Calcium‐dependent enzyme activation and vacuole formation in the apical granular region of pancreatic acinar cells. Proc Natl Acad Sci USA 2000; 97(24):13126–13131.
12 12 Mukherjee R, Criddle DN, Gukovskaya A, et al. Mitochondrial injury in pancreatitis. Cell Calcium 2008; 44(1):14–23.
13 13 Mukherjee R, Mareninova OA, Odinokova IV, et al. Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut 2016; 65(8):1333–1346.
14 14 Kang R, Lotze MT, Zeh HJ, et al. Cell death and DAMPs in acute pancreatitis. Mol Med 2014; 20:466–477.
15 15 Makhija R, Kingsnorth AN. Cytokine storm in acute pancreatitis. J Hepatobiliary Pancreat Surg 2002; 9(4):401–410.
16 16 Carafoli E, Krebs J. Why calcium? How calcium became the best communicator. J Biol Chem 2016; 291(40):20849–20857.
17 17 Voronina S, Longbottom R, Sutton R, et al. Bile acids induce calcium signals in mouse pancreatic acinar cells: implications for bile‐induced pancreatic pathology. J Physiol 2002; 540(1):49–55.
18 18 Derler I, Schindl R, Fritsch R, et al. The action of selective CRAC channel blockers is affected by the Orai pore geometry. Cell Calcium 2013; 53(2):139–151.
19 19 Gerasimenko JV, Gryshchenko O, Ferdek PE, et al. Ca2+ release‐activated Ca2+ channel blockade as a potential tool in antipancreatitis therapy. Proc Natl Acad Sci USA 2013; 110(32):13186–13191.
20 20 Lur G, Haynes LP, Prior IA, et al. Ribosome‐free terminals of rough ER allow formation of STIM1 puncta and segregation of STIM1 from IP(3) receptors. Curr Biol 2009; 19(19):1648–1653.
21 21 Muik M, Schindl R, Fahrner M, Romanin C. Ca2+ release‐activated Ca2+ (CRAC) current, structure, and function. Cell Mol Life Sci 2012; 69(24):4163–4176.
22 22 Parekh AB. Store‐operated CRAC channels: function in health and disease. Nat Rev Drug Discov 2010; 9(5):399–410.
23 23 Stauderman KA. CRAC channels as targets for drug discovery and development. Cell Calcium 2018; 74:147–159.
24 24 Ishikawa J, Ohga K, Yoshino T, et al. A pyrazole derivative, YM‐58483, potently inhibits store‐operated sustained Ca2+ influx and IL‐2 production in T lymphocytes. J Immunol 2003; 170(9):4441–4449.
25 25 Rahman S, Rahman T. Unveiling some FDA‐approved drugs as inhibitors of the store‐operated Ca2+ entry pathway. Sci Rep 2017; 7(1):12881.
26 26 Wen L, Voronina S, Javed MA, et al. Inhibitors of ORAI1 prevent cytosolic calcium‐associated injury of human pancreatic acinar cells and acute pancreatitis in 3 mouse models. Gastroenterology 2015; 149(2):481–492.e7.
27 27 Rice LV, Bax HJ, Russell LJ, et al. Characterization of selective calcium‐release activated calcium channel blockers in mast cells and T‐cells from human, rat, mouse and guinea‐pig preparations. Eur J Pharmacol 2013; 704(1–3):49–57.
28 28 Lerch MM, Gorelick FS. Models of acute and chronic pancreatitis. Gastroenterology 2013; 144(6):1180–1193.
29 29 Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi‐osmotic type of mechanism. Nature 1961; 191:144–148.
30 30 Kirichok Y, Krapivinsky G, Clapham DE. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 2004; 427(6972):360–364.
31 31 Baines CP, Kaiser RA, Purcell NH, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 2005; 434(7033):658–662.
32 32 Broekemeier KM, Dempsey ME, Pfeiffer DR. Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem 1989; 264(14):7826–7830.
33 33 Halestrap AP, Richardson AP. The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol 2015; 78:129–141.
34 34 Nakagawa T, Shimizu S, Watanabe T, et al. Cyclophilin D‐dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 2005; 434(7033):652–658.
35 35 Booth DM, Murphy JA, Mukherjee R, et al. Reactive oxygen species induced by bile acid induce apoptosis and protect against necrosis in pancreatic acinar cells. Gastroenterology 2011; 140(7):2116–2125.
36 36 Shalbueva N, Mareninova OA, Gerloff A, et al. Effects of oxidative alcohol metabolism on the mitochondrial permeability transition pore and necrosis in a mouse model of alcoholic pancreatitis. Gastroenterology 2013; 144(2):437–446.e6.
37 37 Basso E, Fante L, Fowlkes J, et al. Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J Biol Chem 2005; 280(19):18558–18561.
38 38 Luvisetto S, Basso E, Petronilli V, et al. Enhancement of anxiety, facilitation of avoidance behavior, and occurrence of adult‐onset obesity in mice lacking mitochondrial cyclophilin D. Neuroscience 2008; 155(3):585–596.
39 39 Briston T, Selwood DL, Szabadkai G, Duchen MR. Mitochondrial permeability transition: a molecular lesion with multiple drug targets. Trends Pharmacol Sci 2019; 40(1):50–70.
40 40 Rao VK, Carlson EA, Yan SS. Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim Biophys Acta 2014; 1842(8):1267–1272.
41 41 Shore ER, Awais M, Kershaw NM, et al. small molecule inhibitors of cyclophilin D to protect mitochondrial function as a potential treatment for acute pancreatitis. J Med Chem 2016; 59(6):2596–2611.
42 42 Shum LC, White NS, Nadtochiy SM, et al. Cyclophilin D knock‐out mice show enhanced resistance to osteoporosis and to metabolic changes observed in aging bone. PLoS