Business Experiments with R. B. D. McCullough

Business Experiments with R - B. D. McCullough


Скачать книгу

      1 Cloud cover. Planes couldn't fly in the clouds and had to fly above the clouds. If the weather was cloudy, the enemy wouldn't bother to send up fighters, and accuracy was terrible because in that era, bombing depended on sighting landmarks on the ground.

      2 There is a third variable in the background – the seriousness of the fire – that is responsible for the observed relationship. More serious fires require more firefighters and also cause more damage.

      3 The lurking variable that causes both ice cream sales and an increase in drowning deaths is season of the year, i.e. summer.

      4 Of course, persons who eat five fruits and veggies per day are different than those who do not. How, precisely, they are different we do not know. Just because there is a lurking variable does not mean that we can identify it.

      5 The women who chose HRT were different from other women in ways for which the observational study could not control. Again, just because we can deduce the existence of a lurking variable does not follow that we can say what the variable is.

      The above “experiments” (the word is in quotes because they really aren't experiments) are actually just observational data masquerading as experiments, and the way to see this is to perform a hypothetical thought experiment and think about manipulating one of the variables as it would be manipulated in a true experiment. In the fire example above, imagine there was a fire and firemen had responded, and then we ordered 100 more firemen to show up to the fire. Would we expect there to be more damage simply because more firemen were present? Of course not. As will be seen, designed experiments eliminate the effect of the lurking variables.

      Here we mention that many authors conflate the concepts of “lurking variable” and “confounding variable,” treating them as one and the same, but this is a mistake. Though they both make it difficult for the analyst to interpret results, they do so through different mechanisms. A lurking variable affects observational data, while a confounding variable affects experimental data. In this chapter we only encounter lurking variables. In later chapters we will encounter confounding. The “Learning More” section for this chapter describes the differences in detail.

      1.2.2 Sample Selection Bias

      Try it!

      Use the data in the file SampleSelection.csv to repeat the above analysis by running the regression for the full sample and again only for those observations for which images.

Chart depicting a sample selection bias; for observations close to the cutoff Y greater than 15, for any value of X, observations with positive errors will be included in the sample.
and solid line for all observations and horizontal dotted line at images.

      Now let us return to the credit example, and suppose that we had lots of variables that included all possible lurking variables. Suppose we knew the model so that there was no garden of forking paths problem. Now, could we really get causal answers out of these data? Suppose we brought in a statistical expert on getting causal results from observational data. Could he do it? The answer is “no.”

      Aside from the garden of forking paths, there is a more serious problem with these data, and it is rather subtle. Let us consider where our data came from. People apply for credit. Some are granted credit, while others are not.


Скачать книгу