Kuidas mõista andmestunud maailma. Anto Aasa, Mare Ainsaar, Mai Beilmann, Marju Himma Muischnek,

Kuidas mõista andmestunud maailma - Anto Aasa, Mare Ainsaar, Mai Beilmann, Marju Himma Muischnek,


Скачать книгу
M. 2018. Direct Data-based Decision Making under Uncertainty. – European Journal of Operational Research 267, 1, 200–211.

      Haardörfer, R. 2019. Taking Quantitative Data Analysis Out of the Positivist Era: Calling for Theory-Driven Data-Informed Analysis. – Health Education and Behavior 46, 4, 537–540. https://doi.org/10.1177/1090198119853536.

      Hargittai, E. 2020. Potential Biases in Big Data: Omitted Voices on Social Media. – Social Science Computer Review 38, 1, 10–24. https://doi.org/10. 1177/0894439318788322.

      Heckmann, N.; Steger, T.; Dowling, M. 2016. Organizational capacity for change, change experience, and change project performance. – Journal of Business Research 69, 2, 777–784.

      Helbig, N.; Cresswell, A. M., Burke, G. B.; Luna-Reyes, L. 2012. The Dynamics of Opening Government Data: A White Paper. Center for Technology in Government, The Research Foundation of State University of New York, Albany. https://ctg.albany.edu/media/pubs/pdfs/opendata.pdf.

      Heymann, M. 2018. How the service industry can corral big data into a business‐building tool. – Global Business and Organizational Excellence 37, 5, 39–46.

      Hoffmann, A. L. 2019. Where fairness fails: Data, algorithms, and the limits of antidiscrimination discourse. – Information, Communication and Society 22, 7, 900–915. https://doi.org/10.1080/1369118X.2019.1573912.

      Holmberg, J.; Robèrt, K. E. 2000. Backcasting – A framework for for strategic planning. – The International Journal of Sustainable Development and World Ecology 7, 4, 291–308. https://doi.org/10.1080/13504500009470049.

      Hood, C. 2007. Public service management by numbers: Why does it vary? Where has it come from? What are the gaps and puzzles? – Public Money and Management 27, 95–102.

      Jackson, P. M. 2011. Governance by numbers: what we have learned over the past 30 years? – Public Money and Management 31, 13–26.

      Janssen, M.; Charalabidis, Y.; Zuiderwijk, A. 2012. Benefits, adoption barriers and myths of open data and open government. – Information Systems Management 29, 4, 258–268.

      Jetzek, T.; Avital, M.; Bjorn-Andersen, N. 2014. Data-Driven Innovation through Open Government Data. – Journal of Theoretical and Applied Electronic Commerce Research 9, 2. .

      Jones, R. A.; Jimmieson, N. L.; Griffiths, A. 2005. The impact of organizational culture and reshaping capabilities on change implementation success: The mediating role of readiness for change. – Journal of Management Studies 42, 2, 361–386.

      Jones-Devitt, S.; Samiei, C. 2011. The use of league tables and student surveys to determine ‘quality’ in higher education. – M. Modelsworth, L. Nixon, R. Scullion (eds.), The Marketisation of Higher Education: The Student as Consumer. Oxford: Routledge.

      Kearns, M.; Roth, A. 2019. The Ethical Algorithm: The Science of Socially Aware Algorithm Design. Oxford University Press.

      Kennedy, H.; Poell, T.; Van Dijck, J. 2015. Data and agency. – Big Data and Society 2, 2. https://doi.org/10.1177/2053951715621569,

      Kirsch, C.; Parry, W.; Carey, P.; Shaw, D. 2014. Empirical development of a model of performance drivers in organizational change projects. – Journal of Change Management, 14, 1, 99–125.

      Latzer, M.; Saurwein, F.; Just, N. 2018. Governance-Choice Method: In Search of the Appropriate Level of State Intervention. – H. Van den Bulck et al. (eds.), The Palgrave Handbook of Media Policy Research Methods. Palgrave Macmillan.

      Lehne, M.; Sass, J.; Essenwanger, A.; Schepers, J.; Thun, S. 2019. Why digital medicine depends on interoperability. – NPJ: Digital Medicine 2, 1, 1–5. https://doi.org/10.1038/s41746-019-0158-1.

      Löbl, D.; Onneken, P. (rež.) 2015. Schlank durch Schokolade: Eine Wissenschaftslüge geht um die Welt.

      Lynn, L. E. 2012. Public Management. – B. G. Peters, J. Pierre (eds.), Sage Handbook of Public Administration. London: Sage, 17–31.

      Lyotard, J. F. 1979. The Postmodern Condition: A Report on Knowledge. Trans. G. Bennington, M. Massumi. Minneapolis MN: University of Minnesota Press.

      Masso, A.; Kasapoglu, T. 2020. Understanding Power Positions in a New Digital Landscape: Perceptions of Syrian Refugees and Border Experts on Relocation Algorithm. – Information, Communication, Society 23, 8, 1203–1219. https://doi.org/10.1080/1369118X.2020.1739731.

      Masso, A.; Männiste, M.; Siibak, A. 2020. ‘End of Theory’ in the Area of Big Data: Methodological Practices and Challenges in the Social Media Studies. – Acta Baltica Historiae et Philosophiae Scientiarum 8, 1, 33–61. https://www.ies.ee/bahps/acta-baltica/abhps-8-1/02_Masso-2020-1-02.pdf.

      May, T. 2011. Social Research: Issues, Methods and Process. Maidenhead, Berks: Open University Press, Mc Graw-Hill.

      Menzel, D. C. 1999. The morally mute manager: fact or fiction? – Public Personnel Management 28, 4, 515–527.

      Milan, S.; Treré, E. 2019. Big Data from the South(s): Beyond Data Universalism. – Television and New Media 20, 4, 319–335. https://doi.org/10.1177/1527476419837739.

      Miller, P. 2001. Governing by numbers: why calculative practices matter. – Social Research 68, 379–396.

      Männiste, M.; Masso, A. 2018. The role of institutional trust in Estonians’ privacy concerns. – Studies of Transition States and Societies 10, 2, 22–39. https://nbn-resolving.org/urn:nbn:de:0168-ssoar-62614-8.

      Männiste, M.; Masso, A. 2020. ‘Three Drops of Blood for the Devil’: Data Pioneers as Intermediaries of Algorithmic Governance Ideals. – Mediální Studia = Media Studies 14, 1, 55–74.

      Mühlhoff, R. 2019. Human-aided artificial intelligence: Or, how to run large computations in human brains? Toward a media sociology of machine learning. – New Media and Society, 1461444819885334. https://doi.org/10.1177/1461444819885334.

      Noble, S. U. 2018. Algorithms of Oppression: How Search Engines Reinforce Racism. NYU Press.

      Noda, T.; Yoshida, A.; Honda, M. 2019. Economic Effect by Open Data in Local Government of Japan. – J. Baghdadi, A. Harfouche (eds.), ICT for a Better Life and a Better World: The Impact of Information and Communication Technologies on Organizations and Society. Springer, 165–173.

      Obermeyer, Z., Powers, B.; Vogeli, C.; Mullainathan, S. 2019. Dissecting racial bias in an algorithm used to manage the health of populations. – Science 366 (6464), 447–453. https://doi.org/10.1126/science.aax2342.

      Palonka, J.; Begovic, D. 2017. Data Management Maturity for Knowledge-Based Decision-Making: Case of Polish Third Sector Organizations. – N. Baporikar (ed.), Global Practices in Knowledge Management for Societal and Organizational Development. IGI Global, 126–144.

      Parry, W. 2015. Big Change, Best Path: Successfully Managing Organizational Change with Wisdom, Analytics and Insight. Kogan Page Publishers.

      Patra, R. 2019. Digital Inequalities in a Datafied World: A Case of the Estonian e-Residency Program: Magistritöö. Ragnar Nurkse innovatsiooni ja valitsemise instituut, Tallinna Tehnikaülikool.

      Peters, J. D. 2001. “The only proper scale of representation”: The politics of statistics and stories. –


Скачать книгу