Fundamentals of Solar Cell Design. Rajender Boddula
All-Small-Molecule Nonfullerene Organic Solar Cells with High Fill Factor and High Efficiency over 10%; Chem. Mater., 29, 7543−7553, 2017.
29. Huan Li, Yifan Zhao, Jin Fang, Xiangwei Zhu, Benzheng Xia, Kun Lu, Zhen Wang, Jianqi Zhang, Xuefeng Guo, and Zhixiang Wei; Improve the Performance of the All-Small-Molecule Nonfullerene Organic Solar Cells through Enhancing the Crystallinity of Acceptors; Adv. Energy Mater., 1702377, 2018.
30. Yong Huo, Cenqi Yan, Bin Kan, Xiao-Fei Liu, Li-Chuan Chen, Chen-Xia Hu, Tsz-Ki Lau, Xinhui Lu, Chun-Lin Sun, Xiangfeng Shao, Yongsheng Chen, Xiaowei Zhan, and Hao-Li Zhang; Medium Bandgap Small Molecule Donors Compatible with Both Fullerene and Non-fullerene Acceptors; ACS Appl. Mater. Interfaces, 10, 9587–9594, 2018.
31. Yunchuang Wang, Meijia Chang, Bin Kan, Xiangjian Wan, Chenxi Li, and Yongsheng Chen; All-Small-Molecule Organic Solar Cells Based on Pentathiophene Donor and Alkylated Indacenodithiophene-Based Acceptors with Efficiency over 8%; ACS Appl. Energy Mater., 1, 2150−2156, 2018.
32. Haijun Bin, Yankang Yang, Zhi-Guo Zhang, Long Ye, Masoud Ghasemi, Shanshan Chen, Yindong Zhang, Chunfeng Zhang, Chenkai Sun, Lingwei Xue, Changduk Yang, Harald Ade, and Yongfang Li; 9.73% Efficiency Nonfullerene All Organic Small Molecule Solar Cellswith Absorption-Complementary Donor and Acceptor; J. Am. Chem. Soc., 139, 139, 5085−5094, 2017.
33. Xiafei Cheng, Miaomiao Li, Ziqi Guo, Jinde Yu, Guanghao Lu, Laju Bu, Long Ye, Harald Ade,Yongsheng Chen and Yanhou Geng; “Twisted” conjugated molecules as donor materials for efficient all-small-molecule organic solar cells processed with tetrahydrofuran; J. Mater. Chem. A, 7, 23008–23018, 2019.
34. Xinxin Li, Yan Wang, Qinglian Zhu, Xia Guo, Wei Ma, Xuemei Ou, Maojie Zhanga, Yongfang Li; A small molecule donor containing non-fused ring core for all-small-molecule organic solar cells with high efficiency over 11%; J. Mater. Chem. A, 7, 3682–3690, 2019.
35. Zuojia Li, Renping Liang, Jingwei Wang, Bing Na, and Hesheng Liu; Solution-Processable All-Small-Molecule for High-Performance Nonfullerene Organic Solar Cells with High Crystallinity Acceptor; J. Phys. Chem. C, 123, 28021–28026, 2019.
36. Huan Li, Yifan Zhao, Jin Fang, Xiangwei Zhu, Benzheng Xia, Kun Lu, Zhen Wang, Jianqi Zhang, Xuefeng Guo, and Zhixiang Wei; Improve the Performance of the All-Small-Molecule Nonfullerene Organic Solar Cells through Enhancing the Crystallinity of Acceptors; Adv. Energy Mater., 1702377, 2018.
37. Sachin Badguja, Chang Eun Song, Sora Oh, Won Suk Shin, Sang-Jin Moon, Jong-Cheol Lee, In Hwan Jung, and Sang Kyu Lee; Highly Efficient and Thermally Stable Fullerene-Free Organic Solar Cells based on Small Molecule Donor and Acceptor; J. Mater. Chem. A, 4, 16335–16340, 2016.
38. Jisu Hong, Yeon Hee Ha, Hyojung Cha, Ran Kim, Yu Jin Kim, Chan Eon Park, James R. Durrant, Soon-Ki Kwon, Tae Kyu An, and Yun-Hi Kim; All-Small-Molecule Solar Cells Incorporating NDI-Based Acceptors:Synthesis and Full Characterization; ACS Applied Materials & Interfaces, 9, 51, 44667–44677, 2017.
1 * Corresponding author: [email protected]
2
Plasmonic Solar Cells
T. Shiyani1, S. K. Mahapatra2 and I. Banerjee1*
1School of Nanosciences, Central University of Gujarat, Gandhinagar, Gujarat, India
2School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
Abstract
Photovoltaic (PV) cell is a fundamental solar energy conversion device that converts light energy into electric energy. The light absorption and charge recombination are main limiting factors on the efficiency of PV cell or solar cell. A limited efficiency of PV devices makes them less effective in market for clean energy production. Various tactics and methods are demonstrated to enhance the solar cell performance. Metallic nanoparticles have been utilized to fabricate solar cells because of its novel properties such as large surface to volume ratio and surface plasmon resonance (SPR). Plasmonic nanostructures can influence the absorption of light through scattering of surrounding molecules or particles. The plasmonic nanostructures can scatter or concentrate light at subwavelength scale for increasing absorption in active layer and hence enhancing the efficiency of PV devices. Therefore, the plasmonic nanostructures are promising candidates to develop high efficiency solar cells. We discuss about the fundamental mechanisms, ability to scale up the plasmonic with tailored optical properties, solar cell design, and recent advancements in plasmonic solar cells to generate clean energy and solar fuels.
Keywords: Plasmonic nanostructures, thin film, surface plasmon resonance, light scattering, solar cell
2.1 Introduction
Solar energy is cleanest energy source among other renewable energy. Earth receives annually about 1.7 × 105 TW energy on the surface of earth that is thousands times more than the total energy consumption of world, i.e., 12–13 TW [1]. Solar cell is a solar energy conversion device that works on photoelectric effect, which is schematically shown in Figure 2.1. The ejected electrons are called photoelectrons [2]. Photovoltaic (PV) cell converts light energy into electrical energy that can work on small and large-scale applications. Solar cell technology can make an important contribution to solve the energy problem on earth for the benefit of the society. The absorber material in solar cell absorbs the sunlight upon and then the electron-hole (e-h) pair is produced. The generated e-h pairs are needed to separate by completing a electric circuit to collect electrons as a flow of current. The cost of solar PV manufacturing is high due to expensive fabrication and toxic elements, which makes this technology less commercialized as compared to fossil fuels and nuclear energy [3, 4].
Schockey-Queisser limit suggests that the efficiency of solar energy to electric energy conversion for a single junction PV device can be achieved upto about 32%. The efficiency for cell consists of two layers, three layers, and a theoretical infinity layer can reach upto 42%, 49%, and 68%, respectively. An existed thin film solar cell technology with midgap infinite bands suggests a maximum efficiency of 77.2%. The single junction monocrystalline and polycrystalline silicon solar cells provide efficiencies about 20%–24% [5, 6]. Silicon solar cells are widely used to develop solar panels for generating electricity. The most of the price in this technology is because of silicon wafers and cell fabrication processes. Therefore, the advanced research is required in solar cell technology to find novel and cheap materials [7]. The thin film PV devices such as CIGS (~21%), GaAs (~37%), cadmium telluride (CdTe, ~19%), and CZTSSe (~13%) have been developed as alternative to silicon but low absorbance of near band gap light is a major problem [8, 9]. The usage of rare earth and toxic elements in CIGS, GaAs, and CdTe solar cells has made them less successful in market. Therefore, the novel design in device configuration is required to absorb maximum sunlight in solar cell. The various nanomaterials such as quantum dot, nanowire, thin film, and biomaterials can be used in combination to improve the performance of PV device. These combinations can enhance the light trapping on the surface of the PV cell. The biohybrid materials have been utilized to absorb wide range of sunlight for developing dye sensitized solar cells (DSSCs) as well as photoelectrochemical cells (PECs). They have achieved maximum efficiency of 30% at research scale [10, 11]. The multijunction solar cells have been demonstrated with maximum conversion efficiency of about 47%. The various intermediate layers have been explored in multi-junction solar cells enhancing the absorption of light and decreasing the recombination rate of e-h pair [12–14]. These solar cell technologies are summarized in Table 2.1.