PID Passivity-Based Control of Nonlinear Systems with Applications. Romeo Ortega
upper K Subscript upper P Baseline y 0 minus upper K Subscript upper I Baseline left-bracket gamma left-parenthesis x right-parenthesis minus gamma left-parenthesis x Superscript star Baseline right-parenthesis right-bracket comma"/>
which exactly coincides with the control generated with the PI‐PBC evaluated at
The details of this construction are given in Chapter 6, where we also prove that the set of solutions of the partial differential equations (PDEs) that must be solved to generate the invariant foliation
Bibliography
1 K. H. Ang, G. Chong, and Y. Li. PID control system analysis, design and technology. IEEE Transactions on Control Systems Technology, 13(4): 559–576, 2005.
2 K. J. Åstrom. Advances in PID control. In XXXIX Jornadas de Automatica, Badajoz, Spain, 2018.
3 K. J. Åstrom and T. Hägglund. PID Controllers: Theory, Design, and Tuning. 2nd edition. Instrument Society of America, 1995.
4 K. J. Åstrom and T. Hägglund. The future of PID control. Control Engineering Practice, 9(11): 1163–1175, 2001.
5 F. Castaños, R. Ortega, A. J. van der Schaft, and A. Astolfi. Asymptotic stabilization via control by interconnection of port‐Hamiltonian systems. Automatica, 45(7): 1611–1618, 2009.
6 V. Duindam, A. Macchelli, S. Stramigioli, and H. Bruyninckx. Modeling and Control of Complex Physical Systems: The Port‐Hamiltonian Approach. Springer Science & Business Media, 2009.
7 R. Ortega and E. García‐Canseco. Interconnection and damping assignment passivity‐based control: a survey. European Journal of Control, 10(5): 432–450, 2004.
8 R. Ortega, A. J. van der Schaft, F. Castaños, and A. Astolfi. Control by interconnection and standard passivity–based control of port–Hamiltonian systems. IEEE Transactions on Automatic Control, 53(11): 2527–2542, 2008.
9 R. Ortega. Comments on recent claims about trajectories of control systems valid for particular initial conditions. Asian Journal of Control, 1–8, 2021.
10 M. Spivak. Calculus on Manifolds. Addison‐Wesley, 1995.
11 A. J. van der Schaft. ‐Gain and Passivity Techniques in Nonlinear Control. Springer‐Verlag, Berlin, 3rd edition, 2016.
12 A. Venkatraman and A. J. van der Schaft. Energy shaping of port‐Hamiltonian systems by using alternate passive input‐output pairs. European Journal of Control, 16(6): 665–677, 2010.
13 M. Zhang, R. Ortega, D. Jeltsema, and H. Su. Further deleterious effects of the dissipation obstacle in control‐by‐interconnection of port‐Hamiltonian systems. Automatica, 61(11): 227–2331, 2015.
Notes
1 1 Essentially, it is necessary to ensure that the control law 2.1 can be computed without differentiation nor singularities. We will elaborate on this issue in Section 2.2.
2 2 We recall that a necessary condition for passivity of the system is that the relative degree is smaller or equal to one (van der Schaft, 2016).
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.