.
Network Operations and Management Symposium, 2018.
36. Jain, S., Khandelwal, M., Katkar, A., Nygate, J., Applying big data technologies to manage QoS in an SDN. Proceedings of IEEE CNSM’16, pp. 302–306, 2016.
37. Pasquini, R. and Stadler, R., Learning end-to-end application QoS from OpenFlow switch statistics. Proceedings of IEEE NETSOFT’17, pp. 1–9, 2017.
38. Letaifa, A., Adaptive QoE monitoring architecture in SDN networks: Video streaming services case. Proceedings of IEEE IWCMC’17, pp. 1383–1388, 2017.
39. Abar, T., Letaifa, A., Asmi, S., Machine learning based QoE prediction in SDN networks. Proceedings of IEEE IWCMC’17, pp. 1395–1400, 2017.
40. Comaneci, D. and Dobre, C., Securing Networks using SDN and Machine Learning. IEEE International Conference on Computational Science and Engineering, 2018.
41. Murudkar, C.V. and Gitlin, R.D., QoE-driven Anomaly Detection in Self Organizing Mobile Networks using Machine Learning. 2019 Wireless Telecommunications Symposium (WTS), pp. 1–5, April 2019.
42. Murudkar, C. and Gitlin, R., Machine Learning for QoE Prediction and Anomaly Detection in Self-Organizing Mobile Networking Systems. Int. J. Wireless Mobile Networks (IJWMN), 11, 2, April 2019.
43. Yao, H., Mai, T., Xu, X., Zhang, P., Li, M., Liu, Y., NetworkAI: An Intelligent Network Architecture for Self-Learning Control Strategies in Software Defined Networks. IEEE Internet Things J., 5, 4319–4327, 2018.
44. Zhu, L., Tang, X., Shen, M., Du, X., Guizani, M., Privacy-preserving DDoS attack detection using cross-domain traffic in software defined networks. IEEE J. Sel. Areas Commun., 36, 628–643, 2018.
45. Côté, D., Using machine learning in communication networks. J. Opt. Commun. Networks, 10, D100–D109, 2018.
46. Sultana, N., Chilamkurti, N., Peng, W., Alhadad, R., Survey on SDN based network intrusion detection system using machine learning approaches. Peer-Peer Network Appl., 12, 2, 493–501, 2019.
47. Moura, H., Alves, A., Borges, J., Macedo, D., Vieira, M., Ethanol: A Software-Defined Wireless Networking architecture for IEEE 802.11 networks. Comput. Commun., Elsevier, 149, 176–188, 2020.
48. Lei, T., Wen, X., Lu, Z., Li, Y., A semi-matching based load balancing scheme for dense IEEE 802.11 WLANs. IEEE Access, 5, 15332–15339, 2017.
49. Peng, M., He, G., Wang, L., Kai, C., AP Selection Scheme Based on Achievable Throughputs in SDN-Enabled WLANs. IEEE Access, IEEE, 7, 4763–4772, 2019.
50. Fulara, H., Singh, G., Jaisinghani, D., Maity, M., Chakraborty, T., Naik, V., Use of machine learning to detect causes of unnecessary active scanning in wifi networks. Proceedings of WoWMoM, pp. 1–9, 2019.
51. Ernst, J., Kremer, S., Rodrigues, J., A utility based access point selection method for IEEE 802.11 wireless networks with enhanced quality of experience. Proceedings of IEEE ICC, pp. 2363–2368, 2014.
52. Chen, J., Liu, B., Zhou, H., Yu, Q., Gui, L., Shen, X., QoS-driven efficient client association in high-density software-defined WLAN. IEEE Trans. Veh. Technol., 66, 7372–7383, 2017.
53. Quer, G., Baldo, N., Zorzi, M., Cognitive call admission control for voip over ieee 802.11 using bayesian networks. In Proceedings of GLOBECOM, IEEE, pp. 1–6, 2011.
54. Coronado, E., Villalon, J., Garrido, A., Wi-balance: SDN-based load-balancing in enterprise WLANs. IEEE Conference on Network Softwarization (NetSoft), pp. 1–2, 2017.
55. Jagannath, J., Polosky, N., Jagannath, A., Restuccia, F., Melodia, T., Machine learning for wireless communications in the internet of things: A comprehensive survey. Ad Hoc Networks, 93, 2019. Elsevier. https://doi.org/10.1016/j.adhoc.2019.101913.
56. Sanguanpuak, T., Guruacharya, S., Rajatheva, N., Bennis, M., Latva-Aho, M., Multioperator spectrum sharing for small cell networks: A matching game perspective. IEEE Trans. Wireless Commun., 16, 3761–3774, 2017.
57. Grimaldi, S., Mahmood, A., Gidlund, M., An SVM-based method for classification of external interference in industrial wireless sensor and actuator networks. J. Sens. Actuator Networks, 6, 9, 2017. https://doi.org/10.3390/jsan6020009
58. Kulin, M., Kazaz, T., Moerman, I., Poorter, E., End-to-end learning from spectrum data: a deep learning approach for wireless signal identification in spectrum monitoring applications. IEEE Access, 6, 18484–18501, 2018.
59. Youssef, K., Bouchard, L., Haigh, K., Krovi, H., Silovsky, J., Valk, C., Machine learning approach to RF transmitter identification. IEEE J. Radio Freq. Identif., 2, 197–205, 2018.
60. Davaslioglu, K., Soltani, S., Erpek, T., Sagduyu, Y., DeepWiFi: Cognitive WiFi with Deep Learning. IEEE Trans. Mobile Comput., 20, 429–444 2019.
61. Jeunen, O., Bosch, P., Herwegen, M., Doorselaer, K., Godman, N., Latre, S., A machine learning approach for ieee 802.11 channel allocation. 14th International Conference on Network and Service Management (CNSM), pp. 28–36, 2018.
62. Baid, A. and D. Raychaudhuri, D., Understanding channel selection dynamics in dense Wi-Fi networks. IEEE Commun. Mag., 53, 110–117, 2015.
63. Herzen, J., Lundgren, H., Hegde, N., Learning Wi-Fi Performance. 12th Annual International Conference on Sensing, Communication, and Networking (SECON), IEEE, 2015.
64. Sui, K., Zhou, M., Liu, D., Ma, M., Pei, D., Zhao, Y., Li, Z., Moscibroda, T., Characterizing and Improving WiFi Latency in Large-Scale Operational Networks. The 14th ACM International Conference on Mobile Systems, Applications, and Services, ACM, 2016.
65. Coronado, E., Thomas, A., Riggio, R., Adaptive ML-Based Frame Length Optimization in Enterprise SD-WLANs. J. Network Syst. Manage., Springer, 28, 850–881, 2020.
66. Ibarrola, E., Davis, M., Voisin, C., Close, C., Cristobo, L., QoE Enhancement in Next Generation Wireless Ecosystems: A Machine Learning Approach. IEEE Commun. Stand. Mag., 3, 63–70, 2019.
67. Košťál, K., Bencel, R., Ries, M., Trúchly, P., Kotuliak, I., High Performance SDN WLAN Architecture. Sensors, 29, 8, 1880, 8, 2019.
68. Wang, Z., Xu, Y., Li, L., Tian, H., Cui, S., Handover control in wireless systems via asynchronous multi-user deep reinforcement learning. IEEE Internet Things J., IEEE, 5, 4296–4307, 2018.
69. Sequeira, L., Cruz, J., Ruiz-Mas, J., Saldana, J., Fernandez-Navajas, J., Almodovar, J., Building an SDN enterprise WLAN based on virtual APs. IEEE Commun. Lett., 21, 374–377, 2017.
70. Kumar, V., Kandpal, D.C., Jain, M., Gangopadhyay, R., Debnath, S., K-mean clustering based cooperative spectrum sensing in generalized fading channels. Twenty Second National Conference on Communication (NCC), IEEE, pp. 1–5, 2016.
71. Lu, Y., Zhu, P., Wang, D., Fattouche, M., Machine learning techniques with probability vector for cooperative spectrum sensing in cognitive radio networks. IEEE Wireless Communications and Networking Conference, IEEE, pp. 1–6, 2016.
72. Sobabe, G., Song, Y., Bai, X., Guo, B., A cooperative spectrum sensing algorithm based on unsupervised learning. 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), IEEE, pp. 1–6, 2017.
73. Wang, Y., Zhang, Y., Wan, P., Zhang, S., Yang, J., A spectrum sensing method based on empirical mode decomposition and k-means clustering algorithm. Wireless Commun. Mobile Comput., 2018, Article ID 6104502, 10, 2018.
74. Zhang, S., Wang, Y., Li, J., Wan, P., Zhang, Y., Li, N., A cooperative spectrum sensing method based on information geometry and fuzzy c-means clustering algorithm. EURASIP J. Wireless Commun. Networking,