Magnetic Nanoparticles in Human Health and Medicine. Группа авторов
S., Forge, D., Port, M. et al. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews 108 (6): 2064–2110.
46 Lévy, M., Wilhelm, C., Siaugue, J.‐M. et al. (2008). Magnetically induced hyperthermia: size‐dependent heating power of γ‐Fe2O3 nanoparticles. Journal of Physics: Condensed Matter 20 (20): 204133.
47 Liu, X.L., Yang, Y., Ng, C.T. et al. (2012). Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. Journal of Materials Chemistry 22 (17): 8235.
48 Liu, X.L., Yang, Y., Ng, C.T. et al. (2015). Magnetic vortex nanorings: a new class of hyperthermia agent for highly efficient in vivo regression of tumors. Advanced Materials 27 (11): 1939–1944.
49 Lu, A.‐H., Salabas, E.L., and Schüth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition 46 (8): 1222–1244.
50 Lv, Y., Yang, Y., Fang, J. et al. (2015). Size dependent magnetic hyperthermia of octahedral Fe3O4 nanoparticles. RSC Advances 5 (94): 76764–76771.
51 Ma, M., Zhang, Y., Guo, Z., and Gu, N. (2013). Facile synthesis of ultrathin magnetic iron oxide nanoplates by Schikorr reaction. Nanoscale Research Letters 8 (1): 16.
52 Maier‐Hauff, K., Ulrich, F., Nestler, D. et al. (2011). Efficacy and safety of intratumoral thermotherapy using magnetic iron‐oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. Journal of Neuro‐Oncology 103 (2): 317–324.
53 Mamiya, H. and Jeyadevan, B. (2019). Design criteria of thermal seeds for magnetic fluid hyperthermia – from magnetic physics point of view. In: Nanomaterials for Magnetic and Optical Hyperthermia Applications (eds. R.M. Fratila and J.M. De La Fuent), 13–39. Elsevier.
54 Martins, J.P., das Neves, J., de la Fuente, M. et al. (2020). The solid progress of nanomedicine. Drug Delivery and Translational Research 10 (3): 726–729.
55 Minotti, G., Menna, P., Salvatorelli, E. et al. (2004). Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews 56 (2): 185–229.
56 Mohammad, F., Balaji, G., Weber, A. et al. (2010). Influence of gold nanoshell on hyperthermia of superparamagnetic iron oxide nanoparticles. The Journal of Physical Chemistry C 114 (45): 19194–19201.
57 Mohapatra, J., Mitra, A., Aslam, M., and Bahadur, D. (2015). Octahedral shaped Fe3O4 nanoparticles with enhanced specific absorption rate and R2 relaxivity. IEEE Transactions on Magnetics 51 (11): 1–3.
58 Mohapatra, J., Zeng, F., Elkins, K. et al. (2018). Size‐dependent magnetic and inductive heating properties of Fe3O4 nanoparticles: scaling laws across the superparamagnetic size. Physical Chemistry Chemical Physics 20 (18): 12879–12887.
59 Mornet, S., Vasseur, S., Grasset, F., and Duguet, E. (2004). Magnetic nanoparticle design for medical diagnosis and therapy. Journal of Materials Chemistry 14 (14): 2161.
60 Motomura, K., Ishitobi, M., Komoike, Y. et al. (2011). SPIO‐Enhanced magnetic resonance imaging for the detection of metastases in sentinel nodes localized by computed tomography lymphography in patients with breast cancer. Annals of Surgical Oncology 18 (12): 3422–3429.
61 Moyer, H.R. and Delman, K.A. (2008). The role of hyperthermia in optimizing tumor response to regional therapy. International Journal of Hyperthermia 24 (3): 251–261.
62 Muela, A., Muñoz, D., Martín‐Rodríguez, R. et al. (2016). Optimal parameters for hyperthermia treatment using biomineralized magnetite nanoparticles: theoretical and experimental approach. The Journal of Physical Chemistry C 120 (42): 24437–24448.
63 Muller, R.N., Vander Elst, L., Roch, A. et al. (2005). Relaxation by metal‐containing nanosystems. In: Advances in Inorganic Chemistry (ed. R. van Eldik), 239–292.
64 Müller, R., Dutz, S., Neeb, A. et al. (2013). Magnetic heating effect of nanoparticles with different sizes and size distributions. Journal of Magnetism and Magnetic Materials 328: 80–85.
65 Myrovali, E., Maniotis, N., Makridis, A. et al. (2016). Arrangement at the nanoscale: effect on magnetic particle hyperthermia. Scientific Reports 6 (1): 37934.
66 Nahrendorf, M., Zhang, H., Hembrador, S. et al. (2008). Nanoparticle PET‐CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117 (3): 379–387.
67 Nedelcu, G. (2008). Magnetic nanoparticles impact on tumoral cells in the treatment by magnetic fluid hyperthermia. Digest Journal of Nanomaterials and Biostructures 3 (3): 103–107.
68 Nemati, Z., Alonso, J., Martinez, L.M. et al. (2016). Enhanced magnetic hyperthermia in iron oxide nano‐octopods: size and anisotropy effects. The Journal of Physical Chemistry C 120 (15): 8370–8379.
69 Nemati, Z., Salili, S.M., Alonso, J. et al. (2017). Superparamagnetic iron oxide nanodiscs for hyperthermia therapy: does size matter? Journal of Alloys and Compounds 714: 709–714.
70 Nemati, Z., Alonso, J., Rodrigo, I. et al. (2018). Improving the heating efficiency of iron oxide nanoparticles by tuning their shape and size. The Journal of Physical Chemistry C 122 (4): 2367–2381.
71 Noh, S., Moon, S.H., Shin, T.‐H. et al. (2017). Recent advances of magneto‐thermal capabilities of nanoparticles: from design principles to biomedical applications. Nano Today 13: 61–76.
72 Ou, Y.‐C., Wen, X., and Bardhan, R. (2020). Cancer immunoimaging with smart nanoparticles. Trends in Biotechnology 38 (4): 388–403.
73 Périgo, E.A., Hemery, G., Sandre, O. et al. (2015). Fundamentals and advances in magnetic hyperthermia. Applied Physics Reviews 2 (4): 041302.
74 Piñeiro, Y., Vargas, Z., Rivas, J., and López‐Quintela, M.A. (2015). Iron oxide based nanoparticles for magnetic hyperthermia strategies in biological applications. European Journal of Inorganic Chemistry 2015 (27): 4495–4509.
75 Prabhu, N.N. (2016). Magnetosomes: the bionanomagnets and its potential use in biomedical applications. Journal of Nano Research 3 (3): 00057.
76 Rahmer, J., Wirtz, D., Bontus, C. et al. (2017). Interactive magnetic catheter steering with 3‐D real‐time feedback using multi‐color magnetic particle imaging. IEEE Transactions on Medical Imaging 36 (7): 1449–1456.
77 Reddy, L.H., Arias, J.L., Nicolas, J., and Couvreur, P. (2012). Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chemical Reviews 112 (11): 5818–5878.
78 Sakellari, D., Brintakis, K., Kostopoulou, A. et al. (2016). Ferrimagnetic nanocrystal assemblies as versatile magnetic particle hyperthermia mediators. Materials Science and Engineering: C 58: 187–193.
79 Salas, G., Camarero, J., Cabrera, D. et al. (2014). Modulation of magnetic heating via dipolar magnetic interactions in monodisperse and crystalline iron oxide nanoparticles. The Journal of Physical Chemistry C 118 (34): 19985–19994.
80 Salgueiriño‐Maceira, V., Correa‐Duarte, M.A., Spasova, M. et al. (2006). Composite silica spheres with magnetic and luminescent functionalities. Advanced Functional Materials 16 (4): 509–514.
81 Serantes, D., Baldomir, D., Martinez‐Boubeta, C. et al. (2010). Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles. Journal of Applied Physics 108 (7): 073918.
82 Serantes, D., Simeonidis, K., Angelakeris, M. et al. (2014). Multiplying magnetic hyperthermia response by nanoparticle assembling. The Journal of Physical Chemistry C 118 (11): 5927–5934.
83 Song, G., Chen, M., Zhang, Y. et al. (2018). Janus iron oxides @ semiconducting polymer nanoparticle tracer for cell tracking by magnetic particle imaging. Nano Letters 18 (1): 182–189.
84 Spirou, S., Basini, M., Lascialfari, A. et al. (2018). Magnetic hyperthermia and radiation therapy: radiobiological principles and current practice. Nanomaterials 8 (6): 401.
85 Stiufiuc,