Computational Intelligence and Healthcare Informatics. Группа авторов
Table 2.4 Comparison of DL models on the basis of different performance metrics.
Ref. | Model | Accuracy | F1-Score | Specificity | Sensitivity | PPV | NPV | AUC | Recall | Precision |
---|---|---|---|---|---|---|---|---|---|---|
[23] | DenseNet121 | 0.572–0.842 | 0.574 –0.942 | - | - | - | - | - | - | - |
[67] | AlexNet (S) | 0.9684 | 0.9023 | 87.99 | 92.65 | 87.94 | 90.68 | - | - | - |
VGG16 (S) | 0.9742 | 0.9228 | 91.46 | 93.42 | 91.18 | 93.63 | - | - | - | |
VGG19 (S) | 0.9757 | 0.9161 | 88.86 | 94.49 | 88.90 | 94.46 | - | - | - | |
DenseNet121(S) | 0.9801 | 0.9248 | 90.01 | 95.10 | 90.00 | 95.11 | - | - | - | |
ResNet18 (S) | 0.9766 | 0.9099 | 85.09 | 96.63 | 85.97 | 96.52 | - | - | - | |
Inceptionv3(S) | 0.9796 | 0.9225 | 89.58 | 95.08 | 89.58 | 95.08 | - | - | - | |
ResNet50 (S) | 0.9775 | 0.9233 | 90.59 | 94.32 | 90.43 | 94.42 | - | - | - | |
[7] | VDSNet | 0.73 |