EEG Signal Processing and Machine Learning. Saeid Sanei

EEG Signal Processing and Machine Learning - Saeid Sanei


Скачать книгу
De Prony, B.G.R. (1795). Essai experimental et analytique: sur les lois de la dilatabilite de fluids elastiques et sur celles de la force expansive de la vapeur de l'eau et de la vapeur de l'alkool, a differentes temperatures. Journal of Engineering Polytechnique 1 (2): 24–76.

      33 33 Marple, S.L. (1987). Digital Spectral Analysis with Applications. Prentice‐Hall.

      34 34 Lawson, C.L. and Hanson, R.J. (1974). Solving Least Squares Problems. Englewood Cliffs, NJ: Prentice Hall.

      35 35 Bouattoura, D., Gaillard, P., Villon, P. et al. (1996). Multilead evoked potentials modelling based on the Prony's method. Proceedings of Digital Processing Applications (TENCON '96), Perth, WA, Australia, pp. 565–568.

      36 36 Dacorogna, M., Muller, U., Olsen, R.B., and Pictet, O. (1998). Modelling short‐term volatility with GARCH and HARCH models. In: Nonlinear Modelling of High Frequency Financial Time Series, Econometrics (eds. L.C. Dunis and B. Zhou). Elsevier, 17 pp.

      37 37 McLeod, A.J. and Li, W.K. (1983). Diagnostics checking ARMA time series models using squared residual autocorrelations. Journal of Time Series Analysis 4: 269–273.

      38 38 Ray, W.D. (1993). Nonlinear dynamics, chaos and instability statistical theory and economic evidence. Journal of the Operational Research Society 44 (2): 202–203.

      39 39 Hsieh, D.A. (1989). Testing for nonlinear dependence in daily foreign exchange rates. Journal of Business 62: 339–368.

      40 40 Engle, R.F., Lilien, D.M., and Robin, R.P. Estimating time‐varying risk premia in the term structure: the ARCH‐M model. Econometrica 55: 391–407.

      41 41 Nelson, D.B. (1990). Stationarity and persistence in the GARCH(1,1) model. Journal of Econometrics 45: 7–35.

      42 42 Glosten, L.R., Jagannathan, R., and Runkle, D. (1995). On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance 2: 225–251.

      43 43 Zakoian, J.M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics & Control 18: 931–955.

      44 44 Ding, Z., Engle, R.F., and Granger, C.W.J. (1993). A long memory property of stock market returns and a new model. Journal of Empirical Finance 1: 83–106.

      45 45 Sentana, E. (1991). Quadratic ARCH Models: A Potential Reinterpretation of ARCH Models as Second‐Order Taylor Approximations. London School of Economics.

      46 46 Galka, A., Yamashita, O., and Ozaki, T. (2004). GARCH modelling of covariance in dynamical estimation of inverse solutions. Physics Letters A 333: 261–268.

      47 47 Tikhonov, A. (1992). Ill‐Posed Problems in Natural Sciences. Coronet.

      48 48 Roweis, S. and Ghahramani, Z. (1999). A unifying review of linear Gaussian models. Neural Computation 11: 305–345.

      49 49 Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B 39: 1–38.

      50 50 Redner, R.A. and Walker, H.F. (1984). Mixture densities, maximum likelihood and the EM algorithm. SIAM Review 26: 195–239.

      51 51 Ormoneit, D. and Tresp, V. (1998). Averaging, maximum penalized likelihood and Bayesian estimation for improving Gaussian mixture probability density estimates. IEEE Transactions on Neural Networks 9 (4): 639–650.

      52 52 Archambeau, C., Lee, J.A., and Verleysen, M. (2003). On convergence problems of the EM algorithm for finite Gaussian mixtures. Proceedings of the European Symposium on Artificial Neural Networks (ESANN 2003), Bruges, Belgium (23–25 April 2003), 99–106.

      53 53 Hesse, C.W., Holtackers, D., and Heskes, T. (2006). On the use of mixtures of gaussians and mixtures of generalized exponentials for modelling and classification of biomedical signals. Belgian Day on Biomedical Engineering, IEEE Benelux EMBS Symposium (7–8 December).

      54 54 Greenspan, H., Ruf, A., and Goldberger, J. (2006). Constrained Gaussian mixture model framework for automatic segmentation of mr brain images. IEEE Transactions on Medical Imaging 25 (9): 1233–1245.

      55 55 Rio, M., Hutt, A., and Loria, B.G. (2010). Partial amplitude synchronization detection in brain signals using Bayesian Gaussian mixture models. Cinquième conférence plénière française de Neurosciences Computationnelles, “Neurocomp'10”, Lyon, France (October 2010), 109–113.

      56 56 Malmivuo, J. and Plonsey, R. (1995). Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press.

      57 57 Lewis, E.R. (1964). An electronic model of the neuron based on the dynamics of potassium and sodium ion fluxes. In: Proceedings of the 1962 Ojai Symposium on Neural Theory and Modelling (eds. R.F. Reiss, H.J. Hamilton, L.D. Harmon, et al.), 427. Stanford: Stanford University Press.

      58 58 Roy, G. (1972). “A simple electronic analog of the squid axon membrane,” The Neurofet. IEEE Transactions on Biomedical Engineering 19 (1): 60–63.

      59 59 Eccles, J.C. (1964). The Physiology of Synapses. Berlin: Springer‐Verlag.

      60 60 Harmon, L.D. (1961). Studies with artificial neurons, I: properties and functions of an artificial neuron. Kybernetik Heft 3 (Dez.):: 89–101.

      61 61 Mahowald, M.A., Douglas, R.J., LeMoncheck, J.E., and Mead, C.A. (1992). An introduction to silicon neural analogs. Seminars in Neuroscience 4: 83–92.

      62 62 Prange, S. (1990). Emulation of biology‐oriented neural networks. In: Proceedings of the International Conference on Parallel Processing in Neural Systems and Computers (ICNC) (ed. M. Eckmiller). Düsseldorf.

      63 63 Mahowald, M.A. and Douglas, R.J. (1991). A silicon neuron. Nature 354: 515–518.

      64 64 Lu, U., Roach, S.M., Song, D., and Berger, T.W. (2012). Nonlinear dynamic modelling of neuron action potential threshold during synaptically driven broadband intercellular activity. IEEE Transactions on Biomedical Engineering 59 (3): 706–716.

      65 65 Azouz, R. and Gray, C.M. (1999). Cellular mechanisms contributing to response variability of cortical neurons in Vivo. Journal of Neuroscience 19 (6): 2209–2223.

      66 66 Henze, D.A. and Buzsáki, G. (2001). Action potential threshold of hippocampal pyramidal cells in vivo is increased by recent spiking activity. Neuroscience 105 (1): 121–130.

      67 67 Chacron, M.J., Lindner, B., and Longtin, A. (2007). Threshold fatigue and information transfer. Journal of Computational Neuroscience 23 (3): 301–311.

      4.1 Introduction

      Electroencephalography (EEG) signals are the signatures of neural activities and generally are the integrals of active potentials which elicit from the brain with different latencies and populations around each time instant. They are captured by multiple‐electrode EEG machines either from inside the brain, over the cortex under the skull, or in the majority of applications, certain locations over the scalp. The EEG file formats are different for different recording machines but nowadays they can be easily read or converted by conventional software. The signals are normally presented in the time domain, however, many new EEG machines are capable of applying simple signal processing tools such as the Fourier transform to perform frequency analysis and equipped with some imaging tools to visualize EEG topographies (maps of the brain activities in the spatial domain).

      There have been many algorithms developed so far for processing EEG signals. The operations include, but are not limited to, time‐domain analysis, frequency‐domain analysis, spatial‐domain analysis, and multiway processing. Also, several algorithms have been developed to visualize the brain activity from images reconstructed from only the EEGs namely topographs. Separation of the desired sources from the multisensor EEGs has been another research area. This can later lead to the detection of brain abnormalities such as epilepsy and the sources related to various physical and mental activities. In Chapter


Скачать книгу