Data Science in Theory and Practice. Maria Cristina Mariani

Data Science in Theory and Practice - Maria Cristina Mariani


Скачать книгу

      

      Table of Contents

      1  Cover

      2  Title Page

      3  Copyright

      4  List of Figures

      5  List of Tables

      6  Preface

      7  1 Background of Data Science 1.1 Introduction 1.2 Origin of Data Science 1.3 Who is a Data Scientist? 1.4 Big Data

      8  2 Matrix Algebra and Random Vectors 2.1 Introduction 2.2 Some Basics of Matrix Algebra 2.3 Random Variables and Distribution Functions 2.4 Problems

      9  3 Multivariate Analysis 3.1 Introduction 3.2 Multivariate Analysis: Overview 3.3 Mean Vectors 3.4 Variance–Covariance Matrices 3.5 Correlation Matrices 3.6 Linear Combinations of Variables 3.7 Problems

      10  4 Time Series Forecasting 4.1 Introduction 4.2 Terminologies 4.3 Components of Time Series 4.4 Transformations to Achieve Stationarity 4.5 Elimination of Seasonality via Differencing 4.6 Additive and Multiplicative Models 4.7 Measuring Accuracy of Different Time Series Techniques 4.8 Averaging and Exponential Smoothing Forecasting Methods 4.9 Problems

      11  5 Introduction to R 5.1 Introduction 5.2 Basic Data Types 5.3 Simple Manipulations – Numbers and Vectors 5.4 Problems

      12  6 Introduction to Python 6.1 Introduction 6.2 Basic Data Types 6.3 Number Type Conversion 6.4 Python Conditions 6.5 Python File Handling: Open, Read, and Close 6.6 Python Functions 6.7 Problems

      13  7 Algorithms 7.1 Introduction 7.2 Algorithm – Definition 7.3 How to Write an Algorithm 7.4 Asymptotic Analysis of an Algorithm 7.5 Examples of Algorithms 7.6 Flowchart 7.7 Problems

      14  8 Data Preprocessing and Data Validations 8.1 Introduction 8.2 Definition – Data Preprocessing 8.3 Data Cleaning 8.4 Data Transformations 8.5 Data Reduction 8.6 Data Validations 8.7 Problems

      15  9 Data Visualizations 9.1 Introduction 9.2 Definition – Data Visualization 9.3 Data Visualization Techniques 9.4 Data Visualization Tools 9.5 Problems

      16  10 Binomial and Trinomial Trees 10.1 Introduction 10.2 The Binomial Tree Method 10.3 Binomial Discrete Model 10.4 Trinomial Tree Method 10.5 Problems

      17  11 Principal Component Analysis 11.1 Introduction 11.2 Background of Principal Component Analysis 11.3 Motivation Скачать книгу