Physiology of Salt Stress in Plants. Группа авторов

Physiology of Salt Stress in Plants - Группа авторов


Скачать книгу
G.K. and Tripathy, B.C. (2002). Catalytic function of a novel protein protochlorophyllide oxidoreductase C of Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 291: 921–924.

      62 Pavlovic, I., Mlinaric, S., Tarkowska, D. et al. (2019). Early Brassica crops responses to salinity stress: a comparative analysis between chinese cabbage, white cabbage, and kale. Front. Plant Sci. 10: 1–16.

      63 Plaxton, W.C. (1996). The organization and regulation of plant glycolysis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 185–214.

      64 Porcel, R., Aroca, R., and Ruiz‐Lozano, J.M. (2012). Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron. Sustain. Dev. 32: 181–200.

      65 Qadir, M., Quillérou, E., Nangia, V. et al. (2014). Economics of salt‐induced land degradation and restoration. Nat. Resour. Forum 38: 282–295.

      66 Qi, C.H., Chen, M., Song, J., and Wang, B.S. (2009). Increase in aquaporin activity is involved in leaf succulence of the euhalophyte Suaeda salsa, under salinity. Plant Sci. 176: 200–205.

      67 Renault, H., Roussel, V., El Amrani, A. et al. (2010). The Arabidopsis pop2‐1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol. 10: 1–16.

      68 Santos, C.V. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci. Hortic. (Amsterdam) 103: 93–99.

      69 Sasi, S., Venkatesh, J., Daneshi, R.F., and Gururani, M.A. (2018). Photosystem II extrinsic proteins and their putative role in abiotic stress tolerance in higher plants. Plan. Theory 7: 100.

      70 Satir, O. and Berberoglu, S. (2016). Crop yield prediction under soil salinity using satellite derived vegetation indices. F. Crop Res. 192: 134–143.

      71 Shabala, S.N. and Lew, R.R. (2002). Turgor regulation in osmotically stressed arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol. 129: 290–299.

      72 Shabala, S. and Shabala, L. (2011). Ion transport and osmotic adjustment in plants and bacteria. Biomol. Concepts 5: 407–419.

      73 Shabala, L., Zhang, J., Pottosin, I. et al. (2016). Cell‐type‐specific H+‐ATPase activity in root tissues enables K+ retention and mediates acclimation of barley (Hordeum vulgare) to salinity stress. Plant Physiol. 172: 2445–2458.

      74  Shabala, S., Chen, G., Chen, Z.H., and Pottosin, I. (2020). The energy cost of the tonoplast futile sodium leak. New Phytol. 225 (3): 1105–1110.

      75 Shi, H., Quintero, F.J., Pardo, J.M., and Zhu, J.K. (2002). The putative plasma membrane Na+/H+ antiporter SOS1 controls long‐distance Na+ transport in plants. Plant Cell 14: 456–477.

      76 Singh, D., Yadav, N.S., Tiwari, V. et al. (2016). A SNARE‐like superfamily protein SbSLSP from the halophyte Salicornia brachiata confers salt and drought tolerance by maintaining membrane stability, K+/Na+ ratio, and antioxidant machinery. Front. Plant Sci. 7: 737.

      77 Singh‐Rawal, P., Zsiros, O., Bharti, S. et al. (2011). Mechanism of action of anions on the electron transport chain in thylakoid membranes of higher plants. J. Bioenerg. Biomembr. 43: 195–202.

      78 Snapp, S.S., Shennan, C., and Van Bruggen, A.H.C. (1991). Effects of salinity on severity of infection by Phytophthora parasitica Dast., ion concentrations and growth of tomato, Lycopersicon esculentum Mill. New Phytol. 119: 275–284.

      79 Song, C.P., Guo, Y., Qiu, Q. et al. (2004). A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 101: 10211–10216.

      80 de Souza Lima, M.D., Lopes, N.F., Zimmer, P.D. et al. (2012). Enzyme expression in indica and japonica rice cultivars under saline stress. Acta. Sci. Biol. Sci. 34: 473–481.

      81 Stepien, P. and Johnson, G.N. (2009). Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: Role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol. 149: 1154–1165.

      82 Sudhir, P. and Murthy, S.D.S. (2004). Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42: 481–486.

      83 Sui, N., Yang, Z., Liu, M., and Wang, B. (2015). Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves. BMC Genomics 16: 1–18.

      84 Sweetlove, L.J., Beard, K.F.M., Nunes‐Nesi, A. et al. (2010). Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci. 15: 462–470.

      85 Szabolcs, I. (1989). Salt‐Affected Soils. CRC Press, Inc.

      86 Taïbi, K., Taïbi, F., Abderrahim, A. et al. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African. Aust. J. Bot. 105: 306–312.

      87 Tiwari, V., Patel, M.K., Chaturvedi, A.K. et al. (2019). Cloning and functional characterization of the Na+/H+ antiporter (NHX1) gene promoter from an extreme halophyte Salicornia brachiata. Gene 683: 233–242.

      88 Tripathi, R.S. (2009). Alkali Land Reclamation. New Delhi: Mittal Publications.

      89 Tripathi, S., Kumari, S., Chakraborty, A. et al. (2006). Microbial biomass and its activities in salt‐affected coastal soils. Biol. Fertil. Soils 42: 273–277.

      90 Trotta, A., Redondo‐Gomez, S., Pagliano, C. et al. (2012). Chloroplast ultrastructure and thylakoid polypeptide composition are affected by different salt concentrations in the halophytic plant Arthrocnemum macrostachyum. J. Plant Physiol. 169: 111–116.

      91 Turan, S. and Tripathy, B.C. (2015). Salt‐stress induced modulation of chlorophyll biosynthesis during de‐etiolation of rice seedlings. Physiol. Plant. 153: 477–491.

      92 Wong, D., Jee, G., and Merkelo, H. (1980). Effects of bulk pH and of monovalent and divalent cations on chlorophyll a fluorescence and electron transport in pea thylakoids. Biochem. Biophys. Acta. ‐ Bioenerg. 592: 546–558.

      93  Wu, H.J., Zhang, Z., Wang, J.Y. et al. (2012). Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc. Natl. Acad. Sci. U. S. A. 109: 12219–12224.

      94 Xu, J., Feng, Y., Wang, Y. et al. (2016). The foliar spray of Rhodopseudomonas palustris grown under Stevia residue extract promotes plant growth via changing soil microbial community. J. Soils Sediments 16: 916–923.

      95 Yang, Z., Li, J.L., Liu, L.N. et al. (2020). Photosynthetic regulation under salt stress and salt‐tolerance mechanism of sweet Sorghum. Front. Plant Sci. 10: 1–12.

      96 van Zelm, E., Zhang, Y., and Testerink, C. (2020). Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol. 71: 403–433.

      97 Zeng, F., Shabala, S., Maksimović, J.D. et al. (2018). Revealing mechanisms of salinity tissue tolerance in succulent halophytes: a case study for Carpobrotus rossi. Plant Cell Environ. 41: 2654–2667.

      98 Zerai, D.B., Glenn, E.P., Chatervedi, R. et al. (2010). Potential for the improvement of Salicornia bigelovii through selective breeding. Ecol. Eng. 36: 730–739.

      99 Zhang, W., Wang, C., Xue, R., and Wang, L.J. (2019). Effects of salinity on the soil microbial community and soil fertility. J. Integr. Agric. 18: 1360–1368.

      100 Zhao, C., Zhang, H., Song, C. et al. (2020). Mechanisms of plant responses and adaptation to soil salinity. Innovation 1: 100017.

      101 Zörb, C., Geilfus, C.M., and Dietz, K.J. (2019). Salinity and crop yield. Plant Biol. 21: 31–38.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив


Скачать книгу