Wetland Carbon and Environmental Management. Группа авторов

Wetland Carbon and Environmental Management - Группа авторов


Скачать книгу
L., Bliss, N. Crooks, S., Morris, J. T., Megonigal, J. P., et al. (2018). Accuracy and Precision of Tidal Wetland Soil Carbon Mapping in the Conterminous United States. Scientific Reports, 8, 9478. doi: 10.1038/s41598‐018‐26948‐7

      16 Homer, C., Dewitz, J. A., Yang, L., Jin, S., Danielson, P., Xian, G., et al. (2015). Completion of the 2011 National Land Cover Database for the conterminous United States—Representing a decade of land cover change information: Photogrammetric Engineering and Remote Sensing, 81(5), 345–354. http://www.ingentaconnect.com/content/asprs/pers/2015/00000081/00000005/art00002

      17 Hristov, A. N., Johnson, J. M. F., Rice, C. W., Brown, M. E., Conant, R. T., Del Grosso, S. J., et al. (2018). Chapter 5: Agriculture. In: Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report. Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M. A., Najjar, R. G., Reed, S. C., Romero‐Lankao, P., Zhu, Z. (eds.) U.S. Global Change Research Program, Washington, DC, USA, pp. 229–263. doi:10.7930/SOCCR2.2018.Ch5

      18 Huang, S., Dahal, D., Young, C., Chander, G., & Liu, S. (2011). Integration of Palmer Drought Severity Index and remote sensing data to simulate wetland water surface from 1910 to 2009 in Cottonwood Lake area, North Dakota, Remote Sensing of Environment, 115, 12. doi: 10.1016/j.rse.2011.08.002.

      19 Jafarov, E. E., Romanovsky, V. E., Genet, H., McGuire, A. D., Marchenko, & S. S. (2013). The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate. Environmental Research Letters, 8, 035030. doi: 10.1088/1748‐9326/8/3/035030

      20 Jin, S., Homer, C., Yang, L., Danielson, P., Dewitz, J., Li, C., et al. (2019). Overall Methodology Design for the United States National Land Cover Database 2016 Products. Remote Sensing, 11, 2971. https://doi.org/10.3390/rs11242971

      21 Kennedy, H., Alongi, D. M., Karim, A., Chen, G., Chmura, G.L., Crooks, S., et al. (2014). Coastal Wetlands. In: 2013 Supplement to the 2006 Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories: Wetlands. T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, J. Baasans‐ uren, M. Fukuda, et al. (eds.) Switzerland, pp 4.1–4.55.

      22 Kirwan, M., & Megonigal, J. (2013). Tidal wetland stability in the face of human impacts and sea‐level rise. Nature, 504, 53–60. doi: 10.1038/nature12856

      23 Kolka, R., Trettin, C. Tang, W., Krauss, K., Bansal, S., Drexler, J., et al. (2018). Chapter 13: Terrestrial wetlands. In: Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report. Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M. A., Najjar, R. G., Reed, S. C., Romero‐Lankao, P., Zhu, Z. (eds.) U.S. Global Change Research Program, Washington, DC, USA, pp. 507–567. doi:10.7930/SOCCR2.2018.Ch13

      24 Kritee, K., Nair, D., Zavala‐Araiza, D., Proville, J., Rudek, J., Adhya, T. K., et al. (2018). High nitrous oxide fluxes from rice indicate the need to manage water for both long‐ and short‐term climate impacts. PNAS Sep 2018, 115(39), 9720–9725. doi: 10.1073/pnas.1809276115

      25 Kroeger, K., Crooks, S., Moseman‐Valtierra, S., & Tang, J. (2017). Restoring tides to reduce methane emissions in impounded wetlands. A new and potent Blue Carbon climate change intervention. Scientific Reports, 7, 11917. doi:/10.1038/s41598‐017‐12138‐4

      26 Lajtha, K., Bailey, V. L., McFarlane, K., Paustian, K., Bachelet, D., Abramoff, R., et al. (2018). Chapter 12: Soils. In: Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment. Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M. A., Najjar, R. G., Reed, S. C., Romero‐Lankao, P., Zhu, Z. (eds.) U.S. Global Change Research Program, Washington, DC, USA, pp. 469–506. doi: 10.7930/SOCCR2.2018.Ch12

      27 Lauerwald, R., Regnier, P., Guenet, B., Friedlingstein, P., & Ciais, P. (2020). How simulations of the land carbon sink are biased by ignoring fluvial carbon transfers: A case study for the Amazon basin. One Earth, 3(2), 226–236. doi/10.1016/j.oneear.2020.07.009

      28 McKenna, O. P., Mushet, D. M., Rosenberry, D. O., & LaBaugh, J. W. (2017). Evidence for a climate‐induced ecohydrological state shift in wetland ecosystems of the southern Prairie Pothole Region. Climatic Change, 145, 273–287. doi: 10.1007/s10584‐017‐2097‐7

      29 McLeod, E., Chmura, G., Bouilon, S., Salm, R., Björk, M., Duarte, C. M., et al. (2011). A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9, 10. doi: 10.1890/110004

      30 Meli, P., Benayas, J. M. R., Balvanera, P., & Martinez Ramos, M. (2014). Restoration enhances wetland biodiversity and ecosystem service supply, but results are context dependent: a metanalysis. Plos ONE, 9(4), e93507. doi:10.1371/journal.pone.0093507

      31 Mickler, R. A. (2013). Carbon fluxes and greenhouse gas emissions from wetland wildland fires in the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. https://www3.epa.gov/ttn/chief/conference/ei20/session9/rmickler.pdf

      32 Middleton, B. A. (2013). Rediscovering traditional vegetation management in preserves: Trading experiences between cultures and continents, Biological Conservation, 158. doi: 10.1016/j.biocon.2012.10.003.

      33 Moomaw, W. R., Chmura, G. L., Davies, G. T. Finlayson, C. M., Middleton, B. A., Natali, S. M., et al. (2018). Wetlands in a Changing Climate: Science, Policy and Management. Wetlands, 38, 183–205. doi:10.1007/s13157‐018‐1023‐8

      34 Moreno‐Mateos, D., Power, M. E., Comin, F. A., & Yockteng, R. (2012). Structural and functional loss in restored wetland ecosystems. PLOS Biology, 10(1), e1001247. doi: 10.1371/journal.pbio.1001247

      35 Nahlik, A. M., and Fennessy, M. S. (2016). Carbon storage in US Wetlands. Nature Communications, 7, 13835. doi: 10.1038/ncomms13835

      36 Najjar, R., Herrmann, M., Alexander, R., Boyer, E., Burdige, D., Butman, D., et al. (2018). Carbon Budget of Tidal Wetlands, Estuaries, and Shelf Waters of Eastern North America. Global Biogeochemical Cycles, 32. doi: 10.1002/2017GB005790

      37 National Oceanic and Atmospheric Administration, Office for Coastal Management. Coastal Change Analysis Program (C‐CAP) High‐Resolution Land Cover. (2011). Charleston, SC: NOAA Office for Coastal Management. www.coast.noaa.gov/htdata/raster1/landcover/bulkdownload/30m:lc/.

      38 Neary, D. G., Ryan, K. C., & DeBano, L. F. (eds.) (2005 ‐ revised 2008). Wildland fire in ecosystems: effects of fire on soils and water. Gen. Tech. Rep. RMRS‐GTR‐42‐vol.4. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 250 p.

      39 Neubauer S. C., Verhoeven J. T. A. (2019). Wetland effects on global climate: Mechanisms, impacts, and management recommendations. In: An, S., Verhoeven, J. (eds.) Wetlands: Ecosystem Services, Restoration and Wise Use. Ecological Studies (Analysis and Synthesis), vol 238. Springer, Cham.

      40 Osborne, T. Z., Kobziar, L. N., & Inglett, P. W. Fire and water: New perspectives on fire’s role in shaping wetland ecosystems. (2013). Fire Ecology, 9, 1–5. doi: 10.4996/fireecology.0901001

      41 Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., et al. (2012). Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLOS One, 7(9), e43542. doi:10.1371/journal.pone.0043542

      42 Poffenbarger, H., Needelman, B., & Megonigal, P. (2011). Salinity influence on methane emissions from tidal marshes. Wetlands, 31, 831–842. doi:10.1007/s13157‐011‐0197‐0

      43 Reddy, A. D., Hawbaker, T. J., Wurster, F., Zhu, Z., Ward, S., Newcomb, D., & Murray, R. (2015). Quantifying soil


Скачать книгу