Wetland Carbon and Environmental Management. Группа авторов
communities in wetland soils. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 17842–17847. https://doi.org/10.1073/pnas.0808254105
168 Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y., et al. (2013). Observations: Atmosphere and surface. In: T. F. Stocker, D. Qin, G.‐K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
169 Hedges, J. I., & Keil, R. G. (1995). Sedimentary organic matter preservation: An assessment and speculative synthesis. Marine Chemistry, 49, 81–115.
170 Hefting, M. M., Bobbink, R., & de Caluwe, H. (2003). Nitrous oxide emission and denitrification in chronically nitrate‐loaded riparian buffer zones. Journal of Environmental Quality, 32(4), 1194–1203. https://doi.org/10.2134/jeq2003.1194
171 Heitmann, T., Goldhammer, T., Beer, J., & Blodau, C. (2007). Electron transfer of dissolved organic matter and its potential significance for anaerobic respiration in a northern bog. Global Change Biology, 13(8), 1771–1785. https://doi.org/10.1111/j.1365‐2486.2007.01382.x
172 Hemingway, J. D., Rothman, D. H., Grant, K. E., Rosengard, S. Z., Eglinton, T. I., Derry, L. A., & Valier, V. V. (2019). Preservation of natural organic carbon. Nature, 570, 228–238. https://doi.org/10.1038/s41586‐019‐1280‐6
173 Hemminga, M. A., van Soelen, J., & Koutstaal, B. P. (1990). Tidal dispersal of salt marsh insect larvae within the Westerschelde estuary. Ecography, 13(4), 308–315. https://doi.org/10.1111/j.1600‐0587.1990.tb00623.x
174 Henneberry, Y. K., Kraus, T. E. C., Nico, P. S., & Horwath, W. R. (2012). Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions. Organic Geochemistry, 48, 81–89. https://doi.org/10.1016/j.orggeochem.2012.04.005
175 Herbert, E. R., Boon, P., Burgin, A. J., Neubauer, S. C., Franklin, R. B., Ardón, M., et al. (2015). A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere, 6(10), 1–43. https://doi.org/10.1890/ES14‐00534.1
176 Herbert, E. R., Schubauer‐Berigan, J., & Craft, C. B. (2018). Differential effects of chronic and acute simulated seawater intrusion on tidal freshwater marsh carbon cycling. Biogeochemistry, 138(2), 137–154. https://doi.org/10.1007/s10533‐018‐0436‐z
177 Hergoualc’h, K., & Verchot, L. V. (2014). Greenhouse gas emission factors for land use and land‐use change in Southeast Asian peatlands. Mitigation and Adaptation Strategies for Global Change, 19(6), 789–807. https://doi.org/10.1007/s11027‐013‐9511‐x
178 Hessen, D. O., Ågren, G. I., Anderson, T. R., Elser, J. J., & De Ruiter, P. C. (2004). Carbon sequestration in ecosystems: The role of stoichiometry. Ecology, 85(5), 1179–1192. https://doi.org/10.1890/02‐0251
179 Hieber, M., & Gessner, M. O. (2002). Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology, 83(4), 1026–1038. https://doi.org/10.1890/0012‐9658(2002)083[1026:COSDFA]2.0.CO;2
180 Hines, J., Reyes, M., Mozder, T. J., & Gessner, M. O. (2014). Genotypic trait variation modifies effects of climate warming and nitrogen deposition on litter mass loss and microbial respiration. Global Change Biology, 20(12), 3780–3789. https://doi.org/10.1111/gcb.12704
181 Hines, M. E., Duddleston, K. N., & Kiene, R. P. (2001). Carbon flow to acetate and C1 compounds in northern wetlands. Geophysical Research Letters, 28(22), 4251–4254. https://doi.org/10.1029/2001GL012901
182 Hobbie, S. E. (2000). Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems, 3(5), 484–494. https://doi.org/10.1007/s100210000042
183 Hockaday, W. C., Masiello, C. A., Randerson, J. T., Smernik, R. J., Baldock, J. A., Chadwick, O. A., & Harden, J. W. (2009). Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance. Journal of Geophysical Research: Biogeosciences, 114(2), 1–14. https://doi.org/10.1029/2008JG000803
184 Hodgkins, S. B., Tfaily, M. M., McCalley, C. K., Logan, T. A., Crill, P. M., Saleska, S. R., et al. (2014). Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proceedings of the National Academy of Sciences of the United States of America, 111(16), 5819–5824. https://doi.org/10.1073/pnas.1314641111
185 Hodgkins, S. B., Richardson, C. J., Dommain, R., Wang, H., Glaser, P. H., Verbeke, B., et al. (2018). Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nature Communications, 9, 3640. https://doi.org/10.1038/s41467‐018‐06050‐2
186 Holden, J. (2005). Peatland hydrology and carbon release: Why small‐scale process matters. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363(1837), 2891–2913. https://doi.org/10.1098/rsta.2005.1671
187 Holgerson, M. A., Post, D. M., & Skelly, D. K. (2016). Reconciling the role of terrestrial leaves in pond food webs: A whole‐ecosystem experiment. Ecology, 97(7), 1771–1782. https://doi.org/10.1890/15‐1848.1
188 Holm, G. O., Perez, B. C., McWhorter, D. E., Krauss, K. W., Johnson, D. J., Raynie, R. C., & Killebrew, C. J. (2016). Ecosystem level methane fluxes from tidal freshwater and brackish marshes of the Mississippi River Delta: Implications for coastal wetland carbon projects. Wetlands, 36(3), 401–413. https://doi.org/10.1007/s13157‐016‐0746‐7
189 Holmquist, J. R., Windham‐Myers, L., Bernal, B., Byrd, K. B., Crooks, S., Gonneea, M. E., et al. (2018). Uncertainty in United States coastal wetland greenhouse gas inventorying. Environmental Research Letters, 13(11), 115005. https://doi.org/10.1088/1748‐9326/aae157
190 Hooijer, A., Page, S., Jauhiainen, J., Lee, W. A., Lu, X. X., Idris, A., & Anshari, G. (2012). Subsidence and carbon loss in drained tropical peatlands. Biogeosciences, 9(3), 1053–1071. https://doi.org/10.5194/bg‐9‐1053‐2012
191 Hope, G., Chokkalingam, U., & Anwar, S. (2005). The stratigraphy and fire history of the Kutai Peatlands, Kalimantan, Indonesia. Quaternary Research, 64(3), 407–417. https://doi.org/10.1016/j.yqres.2005.08.009
192 Hopkinson, C. S. (1992). A comparison of ecosystem dynamics in freshwater wetlands. Estuaries, 15(4), 549–562. https://doi.org/10.2307/1352397
193 Hopkinson,