Nanotechnology in Medicine. Группа авторов
Production, Characterization and Challenges (ed. A. Kumar), 365–394. Studium Press LLC.
26 Jia, X., Li, N., and Chen, J. (2005). A subchronic toxicity study of elemental Nano‐Se in Sprague‐Dawley rats. Life Sciences 76 (17): 1989–2003.
27 Jin, N., Zhu, H., Liang, X. et al. (2017). Sodium selenate activated Wnt/β‐catenin signaling and repressed amyloid‐β formation in a triple transgenic mouse model of Alzheimer′s disease. Experimental Neurology 297: 36–49.
28 Keyhani, A., Ziaali, N., Shakibaie, M. et al. (2020). Biogenic selenium nanoparticles target chronic toxoplasmosis with minimal cytotoxicity in a mouse model. Journal of Medical Microbiology 69 (1): 104–110.
29 Khan, A.U., Khan, M., Cho, M.H., and Khan, M.M. (2020). Selected nanotechnologies and nanostructures for drug delivery, nanomedicine and cure. Bioprocess and Biosystems Engineering https://doi.org/10.1007/s00449‐020‐02330‐8.
30 Khan, S., Ullah, M.W., Siddique, R. et al. (2019). Catechins‐modified selenium‐doped hydroxyapatite nanomaterials for improved osteosarcoma therapy through generation of reactive oxygen species. Frontiers in Oncology 9: 499.
31 Khurana, A., Tekula, S., Saifi, M.A. et al. (2019). Therapeutic applications of selenium. Biomedicine and Pharmacotherapy 111: 802–812.
32 Kirchner, С., Liedl, T., Kudera, S. et al. (2005). Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Letters 5 (2): 331–338.
33 Kirkinezos, I.G. and Moraes, C.T. (2001). Reactive oxygen species and mitochondrial diseases. Seminars in Cell and Developmental Biology 12 (6): 449–457.
34 Kirwale, S., Pooladanda, V., Thatikonda, S. et al. (2019). Selenium nanoparticles induce autophagy mediated cell death in human keratinocytes. Nanomedicine 14 (15): 1991–2010.
35 Kumar, N., Krishnani, K.K., and Singh, N.P. (2018). Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish. Environmental Science and Pollution Research International 25 (9): 8914–8927.
36 Kumar, S., Tomar, M.S., and Acharya, A. (2015). Carboxylic group‐induced synthesis and characterization of selenium nanoparticles and its anti‐tumor potential on Dalton’s lymphoma cells. Colloids and Surfaces. B, Biointerfaces 126: 546–552.
37 Kuršvietienė, L., Mongirdienė, A., Bernatonienė, J. et al. (2020). Selenium anticancer properties and impact on cellular redox status. Antioxidants 9 (1): 80.
38 Li, H., Zhang, J., Wang, T. et al. (2008). Elemental selenium particles at nano‐size (Nano‐Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper‐accumulation of selenium: a comparison with sodium selenite. Aquatic Toxicology 89 (4): 251–256.
39 Li, X., Wong, Y.S., Chen, T. et al. (2011). The reversal of cisplatin‐induced nephrotoxicity by selenium nanoparticles functionalized with 11‐mercapto‐1‐undecanol by inhibition of ROS‐mediated apoptosis. Biomaterials 32 (34): 9068–9076.
40 Liu, T., Zeng, L., Jiang, W. et al. (2015). Rational design of cancer‐targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomedicine: Nanotechnology, Biology and Medicine 11 (4): 947–958.
41 Luo, H., Wang, F., Bai, Y. et al. (2012). Selenium nanoparticles inhibit the growth of HeLa and MDA‐MB‐231 cells through induction of S phase arrest. Colloids and Surfaces. B, Biointerfaces 94: 304–308.
42 Magdolenova, Z., Collins, A., Kumar, A. et al. (2014). Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8 (3): 233–278.
43 Mal, J., Veneman, W.J., Nancharaiah, Y.V. et al. (2017). A comparison of fate and toxicity of selenite, biogenically, and chemically synthesized selenium nanoparticles to zebrafish (Danio rerio) embryogenesis. Nanotoxicology 11 (1): 87–97.
44 Malhotra, S., Jha, N., and Desai, K. (2014). A superficial synthesis of selenium nanospheres using wet chemical approach. International Journal of Nanotechnology and Application 3 (4): 7–14.
45 Mehta, S.K., Chaudhary, S., Kumar, S. et al. (2008). Surfactant assisted synthesis and spectroscopic characterization of selenium nanoparticles in ambient conditions. Nanotechnology 19 (29): 5601.
46 Menon, S., Devi, S., Santhiya, R. et al. (2018). Selenium nanoparticles: a potent chemotherapeutic agent and an elucidation of its mechanism. Colloids and Surfaces. B, Biointerfaces 170: 280–292.
47 Oremland, R.S., Herbel, M.J., Blum, J.S. et al. (2004). Structural and spectral features of selenium nanospheres produced by Se‐respiring bacteria. Applied and Environmental Microbiology 70 (1): 52–60.
48 Petersen, E.J. and Nelson, B.C. (2010). Mechanisms and measurements of nanomaterial‐induced oxidative damage to DNA. Analytical and Bioanalytical Chemistry 398 (2): 613–650.
49 Pi, J., Jin, H., Liu, R. et al. (2013). Pathway of cytotoxicity induced by folic acid modified selenium nanoparticles in MCF‐7 cells. Applied Microbiology and Biotechnology 97 (3): 1051–1062.
50 Piacenza, E., Presentato, A., Zonaro, E. et al. (2018). Selenium and tellurium nanomaterials. Physical Sciences Reviews 3 (5): 20170100.
51 Pozhilova, E.V., Novikov, V.E., and Levchenkova, O.S. (2015). Reactive oxygen species in cell physiologyand pathology. Vestnik of the Smolensk State Medical Academy 14 (2): 13–22.
52 Prasad, S., Gupta, S.C., and Tyagi, A.K. (2017). Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Letters 387: 95–105.
53 Qiao, L., Dou, X., Yan, S. et al. (2020). Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate diquat‐induced intestinal barrier dysfunction in C57BL/6 mice through their antioxidant activity. Food and Function 11 (4): 3020–3031.
54 Rao, S., Lin, Y., Du, Y. et al. (2019). Designing multifunctionalized selenium nanoparticles to reverse oxidative stress‐induced spinal cord injury by attenuating ROS overproduction and mitochondria dysfunction. Journal of Materials Chemistry B 7 (16): 2648–2656.
55 Rodionova, L.V., Shurygina, I.A., Samoylova, L.G. et al. (2015a). Osteoresorption modelling by means of introduction of selenium preparation under conditions of reparative osteogenesis. Siberian Medical Journal 137 (6): 94–98.
56 Rodionova, L.V., Shurygina, I.A., Samoylova, L.G. et al. (2016). Effect of intraosseous introduction of selenium/arabinogalactan nanoglycoconjugate on the main indicators of primary metabolism in consolidation of bone fracture. Acta Biomedica Scientifica 1 (4): 104–108.
57 Rodionova, L.V., Shurygina, I.A., Shurygin, M.G. et al. (2014). Method for simulatung osteoresorption under osteogenic conditions. RU patent 2524128.
58 Rodionova, L.V., Shurygina, I.A., Sukhov, B.G. et al. (2015b). Nanobiocomposite based on selenium and arabinogalactan: sinthesis, structure, and application. Russian Journal of General Chemistry 85 (2): 485–487.
59 Sarkar, B., Bhattacharjee, S., Daware, A. et al. (2015). Selenium nanoparticles for stress‐resilient fish and livestock. Nanoscale Research Letters 10 (1): 371.
60 Shah, C.P., Kumar, M., and Bajaj, P.N. (2007). Acid‐induced synthesis of polyvinyl alcohol‐ stabilized selenium nanoparticles. Nanotechnology 18 (38): 385607.
61 Shakibaie, M., Shahverdi, A.R., Faramarzi, M.A. et al. (2013). Acute and subacute toxicity of novel biogenic selenium nanoparticles in mice. Pharmaceutical Biology 51 (1): 58–63.
62 Sharifi, S., Behzadi, S., Laurent, S. et al. (2012). Toxicity of nanomaterials. Chemical Society Reviews 41 (6): 2323–2343.
63 Shurygina, I.A., Rodionova, L.V., Shurygin, M.G. et al. (2015). Using confocal microscopy to study the effect of an original pro‐enzyme Se/arabinogalactan nanocomposite on tissue regeneration in a skeletal system. Bulletin of the Russian Academy of Sciences: Physics 79 (2): 256–258.
64 Shurygina, I.A. and Shurygin, M.G. (2017). Nanoparticles in wound healing and regeneration. In: Metal Nanoparticles in Pharma (eds.