Polymer Composites for Electrical Engineering. Группа авторов
(e) PBP3 and (f) PVDF/BNNS composites."/>
Figure 1.12 (a) Illustration of the fabrication process of sandwich‐structured films (P stands for the PVDF layer, and B denotes the BNNSs layer); (b) cross‐sectional SEM pictures of PBP1, PBP3, PBP5, and PBP7, respectively (all scale bars are 2 μm); (c) Weibull breakdown strength; and (d) maximum discharged energy density and charge/discharge efficiency of the series films, comparison of electric field distribution, and electrical tree propagation path of (e) PBP3 and (f) PVDF/BNNS composites.
Source: Zhu et al. [94]. Reproduced with permission of John Wiley & Sons.
References
1 1 Li, Q., Yao, F., Liu, Y. et al. (2018). High‐temperature dielectric materials for electrical energy storage. Annual Review of Materials Research 48: 219–243.
2 2 Chen, Q., Shen, Y., Zhang, S. et al. (2015). Polymer‐based dielectrics with high energy storage density. Annual Review of Materials Research 45: 433–458.
3 3 Huang, X., Sun, B., Zhu, Y. et al. (2019). High‐k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Progress in Materials Science 100: 187–225.
4 4 Dang, Z.M., Zheng, M.S., and Zha, J.W. (2016). 1D/2D carbon nanomaterial‐polymer dielectric composites with high permittivity for power energy storage applications. Small 12 (13): 1688–1701.
5 5 Zhou, Y. and Wang, Q. (2020). Advanced polymer dielectrics for high temperature capacitive energy storage. Journal of Applied Physics 127 (24): 240902.
6 6 Pan, J., Li, K., Chuayprakong, S. et al. (2010). High‐temperature poly (phthalazinone ether ketone) thin films for dielectric energy storage. ACS Applied Materials & Interfaces 2 (5): 1286–1289.
7 7 Dang, Z.M., Yuan, J.K., Yao, S.H. et al. (2013). Flexible nanodielectric materials with high permittivity for power energy storage. Advanced Materials 25 (44): 6334–6365.
8 8 Li, Q. and Wang, Q. (2016). Ferroelectric polymers and their energy‐related applications. Macromolecular Chemistry and Physics 217 (11): 1228–1244.
9 9 Thakur, V.K. and Gupta, R.K. (2016). Recent progress on ferroelectric polymer‐based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chemical Reviews 116 (7): 4260–4317.
10 10 Li, H., Liu, F., Fan, B. et al. (2018). Nanostructured ferroelectric‐polymer composites for capacitive energy storage. Small Methods 2 (6): 1700399.
11 11 Rabuffi, M. and Picci, G. (2002). Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Transactions on Plasma Science 30 (5): 1939–1942.
12 12 Shen, Y., Zhang, X., Li, M. et al. (2017). Polymer nanocomposite dielectrics for electrical energy storage. National Science Review 4 (1): 23–25.
13 13 Wang, Q. and Zhu, L. (2011). Polymer nanocomposites for electrical energy storage. Journal of Polymer Science Part B: Polymer Physics 49 (20): 1421–1429.
14 14 Li, Q. and Cheng, S. (2020). Polymer nanocomposites for high‐energy‐density capacitor dielectrics: fundamentals and recent progress. IEEE Electrical Insulation Magazine 36 (2): 7–28.
15 15 Cao, Y., Irwin, P.C., and Younsi, K. (2004). The future of nanodielectrics in the electrical power industry. IEEE Transactions on Dielectrics and Electrical Insulation 11 (5): 797–807.
16 16 Yao, K., Chen, S., Rahimabady, M. et al. (2011). Nonlinear dielectric thin films for high‐power electric storage with energy density comparable with electrochemical supercapacitors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 58 (9): 1968–1974.
17 17 Fan, B., Liu, F., Yang, G. et al. (2018). Dielectric materials for high‐temperature capacitors. IET Nanodielectrics 1 (1): 32–40.
18 18 Sebastian, M.T. and Jantunen, H. (2008). Low loss dielectric materials for LTCC applications: a review. International Materials Reviews 53 (2): 57–90.
19 19 Sarjeant, W.J., Zirnheld, J.F., and MacDougall, W. (1998). Capacitors. IEEE Transactions on Plasma Science 26 (5): 1368–1392.
20 20 Sarjeant, W.J., Clelland, I.W., and Price, R.A. (2001). Capacitive components for power electronics. Proceedings of the IEEE 89 (6): 846–855.
21 21 Yao, Z., Song, Z., Hao, H. et al. (2017). Homogeneous/inhomogeneous‐structured dielectrics and their energy‐storage performances. Advanced Materials 29 (20): 1601727.
22 22 Li, Q., Chen, L., Gadinski, M.R. et al. (2015). Flexible high‐temperature dielectric materials from polymer nanocomposites. Nature 523 (7562): 576–579.
23 23 Li, Q., Zhang, G., Liu, F. et al. (2015). Solution‐processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy & Environmental Science 8 (3): 922–931.
24 24 Yuan, C., Zhou, Y., Zhu, Y. et al. (2020). Polymer/molecular semiconductor all‐organic composites for high‐temperature dielectric energy storage. Nature Communications 11: 3919.
25 25 Li, J., Seok, S.I., Chu, B. et al. (2009). Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density. Advanced Materials 21 (2): 217–221.
26 26 Li, J., Claude, J., Norena‐Franco, L.E. et al. (2008). Electrical energy storage in ferroelectric polymer nanocomposites containing surface‐functionalized BaTiO3 nanoparticles. Chemistry of Materials 20 (20): 6304–6306.
27 27 Yao, L., Pan, Z., Zhai, J. et al. (2018). High‐energy‐density with polymer nanocomposites containing of SrTiO3 nanofibers for capacitor application. Composites Part A: Applied Science and Manufacturing 109: 48–54.
28 28 Lu, X., Zhang, L., Tong, Y. et al. (2019). BST‐P(VDF‐CTFE) nanocomposite films with high dielectric constant, low dielectric loss, and high energy‐storage density. Composites Part B: Engineering 168: 34–43.
29 29 Jain, A., Prashanth, K.J., Sharma, A.K. et al. (2015). Dielectric and piezoelectric properties of PVDF/PZT composites: a review. Polymer Engineering & Science 55 (7): 1589–1616.
30 30 Shen, Y., Gu, A., Liang, G. et al. (2010). High performance CaCu3Ti4O12/cyanate ester composites with excellent dielectric properties and thermal resistance. Composites Part A: Applied Science and Manufacturing 41 (11): 1668–1676.
31 31 Chen, S.S., Hu, J., Gao, L. et al. (2016). Enhanced breakdown strength and energy density in PVDF nanocomposites with functionalized MgO nanoparticles. RSC Advances 6 (40): 33599–33605.
32 32 Kim, S.H., Kang, H.S., Sohn, E.H. et al. (2020). High discharge energy density and efficiency in newly designed PVDF@SiO2‐PVDF composites for energy capacitors. ACS Applied Energy Materials 3 (9): 8937–8945.
33 33 Li, H., Ai, D., Ren, L. et al. (2019). Scalable polymer nanocomposites with record high‐temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Advanced Materials 31 (23): 1900875.
34 34 Zhang, H., Marwat, M.A., Xie, B. et al. (2019). Polymer matrix nanocomposites with 1D ceramic nanofillers for energy storage capacitor applications. ACS Applied Materials & Interfaces 12 (1): 1–37.
35 35 Tang, H., Lin, Y., and Sodano, H.A. (2013). Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors. Advanced Energy Materials 3 (4): 451–456.
36 36 Shen, Z.H., Wang, J.J., Lin, Y. et al. (2018). High‐throughput phase‐field design of high‐energy‐density polymer nanocomposites. Advanced Materials 30 (2): 1704380.
37 37 Shen, X., Zheng, Q., and Kim, J.K. (2021). Rational design of two‐dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Progress in Materials Science 115: 100708.
38 38 Pan, Z., Liu, B., Zhai, J. et al. (2017). NaNbO3 two‐dimensional platelets induced highly energy storage density