Polymer Composites for Electrical Engineering. Группа авторов
thermal conductive shape‐stabilized phase change materials of polyethylene glycol/boron nitride@chitosan composites for thermal energy storage. Composites Part A: Applied Science and Manufacturing 129: 105710.
104 104 Yang, J., Tang, L.‐S., Bao, R.‐Y. et al. (2016). An ice‐templated assembly strategy to construct graphene oxide/boron nitride hybrid porous scaffolds in phase change materials with enhanced thermal conductivity and shape stability for light–thermal–electric energy conversion. Journal of Materials Chemistry A 4: 18841–18851.
105 105 Yang, J., Yu, P., Tang, L.S. et al. (2017). Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar‐to‐electric energy conversion. Nanoscale 9: 17704–17709.
106 106 Yang, J., Tang, L.‐S., Bao, R.‐Y. et al. (2017). Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar‐thermal‐electric energy conversion and storage with very low content of graphene nanoplatelets. Chemical Engineering Journal 315: 481–490.
107 107 Wang, W., Tang, B., Ju, B. et al. (2017). Fe3O4‐functionalized graphene nanosheet embedded phase change material composites: efficient magnetic‐ and sunlight‐driven energy conversion and storage. Journal of Materials Chemistry A 5: 958–968.
108 108 Jiang, Y., Wang, Z., Shang, M. et al. (2015). Heat collection and supply of interconnected netlike graphene/polyethyleneglycol composites for thermoelectric devices. Nanoscale 7: 10950–10953.
109 109 Chen, L., Zou, R., Xia, W. et al. (2012). Electro‐ and photodriven phase change composites based on wax‐infiltrated carbon nanotube sponges. ACS Nano 6: 10884–10892.
110 110 Li, Y., Samad, Y.A., Polychronopoulou, K. et al. (2014). From biomass to high performance solar–thermal and electric–thermal energy conversion and storage materials. Journal of Materials Chemistry A 2: 7759–7765.
111 111 Zhang, K., Han, B., and Yu, X. (2012). Electrically conductive carbon nanofiber/paraffin wax composites for electric thermal storage. Energy Conversion and Management 64: 62–67.
112 112 Li, G., Zhang, X., Wang, J., and Fang, J. (2016). From anisotropic graphene aerogels to electron‐ and photo‐driven phase change composites. Journal of Materials Chemistry A 4: 17042–17049.
113 113 Xue, F., Lu, Y., Qi, X. et al. (2019). Melamine foam‐templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities. Chemical Engineering Journal 365: 20–29.
114 114 Chen, R., Yao, R., Xia, W., and Zou, R. (2015). Electro/photo to heat conversion system based on polyurethane embedded graphite foam. Applied Energy 152: 183–188.
115 115 Zhou, Y., Wang, X., Liu, X. et al. (2019). Polyurethane‐based solid–solid phase change materials with halloysite nanotubes‐hybrid graphene aerogels for efficient light‐ and electro‐thermal conversion and storage. Carbon 142: 558–566.
116 116 Zhou, Y., Wang, X., Liu, X. et al. (2019). Multifunctional ZnO/polyurethane‐based solid–solid phase change materials with graphene aerogel. Solar Energy Materials and Solar Cells 193: 13–21.
117 117 Wang, Y., Tang, B., and Zhang, S. (2012). Novel organic solar thermal energy storage materials: efficient visible light‐driven reversible solid–liquid phase transition. Journal of Materials Chemistry 22: 18145–18150.
118 118 Huang, X., Xia, W., and Zou, R. (2014). Nanoconfinement of phase change materials within carbon aerogels: phase transition behaviours and photo‐to‐thermal energy storage. Journal of Materials Chemistry A 2: 19963–19968.
119 119 Zhang, Q., Wang, H., Ling, Z. et al. (2015). RT100/expand graphite composite phase change material with excellent structure stability, photo‐thermal performance and good thermal reliability. Solar Energy Materials and Solar Cells 140: 158–166.
120 120 Xiong, W., Chen, Y., Hao, M. et al. (2015). Facile synthesis of PEG based shape‐stabilized phase change materials and their photo‐thermal energy conversion. Applied Thermal Engineering 91: 630–637.
121 121 Yang, J., Qi, G.‐Q., Tang, L.‐S. et al. (2016). Novel photodriven composite phase change materials with bioinspired modification of BN for solar‐thermal energy conversion and storage. Journal of Materials Chemistry A 4: 9625–9634.
122 122 Wang, Z., Tong, Z., Ye, Q. et al. (2017). Dynamic tuning of optical absorbers for accelerated solar‐thermal energy storage. Nature Communications 8: 1478.
123 123 Fan, X., Xiao, J., Wang, W. et al. (2018). Novel magnetic‐to‐thermal conversion and thermal energy management composite phase change material. Polymers 10: 585.
124 124 Yu, C., Yang, S.H., Pak, S.Y. et al. (2018). Graphene embedded form stable phase change materials for drawing the thermo‐electric energy harvesting. Energy Conversion and Management 169: 88–96.
125 125 Sarier, N. and Onder, E. (2012). Organic phase change materials and their textile applications: an overview. Thermochimica Acta 540: 7–60.
126 126 Wu, H., Li, S., Shao, Y. et al. (2020). Melamine foam/reduced graphene oxide supported form‐stable phase change materials with simultaneous shape memory property and light‐to‐thermal energy storage capability. Chemical Engineering Journal 379: 122373.
127 127 Wu, J., Hu, R., Zeng, S. et al. (2020). Flexible and robust biomaterial microstructured coloured textiles for personal thermoregulation. ACS Applied Materials & Interfaces 12: 19015–19022.
128 128 Wang, Z., Zhang, Z., Jia, L., and Yang, L. (2015). Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li‐ion battery. Applied Thermal Engineering 78: 428–436.
129 129 Xiao, C., Zhang, G., Li, Z., and Yang, X. (2020). Custom design of solid–solid phase change material with ultra‐high thermal stability for battery thermal management. Journal of Materials Chemistry A 8: 14624–14633.
130 130 Jing, J., Wu, H., Shao, Y. et al. (2019). Melamine foam‐supported form‐stable phase change materials with simultaneous thermal energy storage and shape memory properties for thermal management of electronic devices. ACS Applied Materials & Interfaces 11: 19252–19259.
131 131 Xue, F., Jin, X.Z., Xie, X. et al. (2019). Constructing reduced graphene oxide/boron nitride frameworks in melamine foam towards synthesizing phase change materials applied in thermal management of microelectronic devices. Nanoscale 11: 18691–18701.
132 132 Nejman, A., Cieślak, M., Gajdzicki, B. et al. (2014). Methods of PCM microcapsules application and the thermal properties of modified knitted fabric. Thermochimica Acta 589: 158–163.
133 133 Geng, X., Li, W., Wang, Y. et al. (2018). Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing. Applied Energy 217: 281–294.
134 134 Babapoor, A., Karimi, G., Golestaneh, S.I., and Mezjin, M.A. (2017). Coaxial electro‐spun PEG/PA6 composite fibers: fabrication and characterization. Applied Thermal Engineering 118: 398–407.
135 135 Xia, W., Fei, X., Wang, Q. et al. (2021). Nano‐hybridized form‐stable ester@F‐SiO2 phase change materials for melt‐spun PA6 fibers engineered towards smart thermal management fabrics. Chemical Engineering Journal 403: 126369.
136 136 Wang, Y., Cui, Y., Shao, Z. et al. (2020). Multifunctional polyimide aerogel textile inspired by polar bear hair for thermoregulation in extreme environments. Chemical Engineering Journal 390: 124623.
137 137 Wu, W., Huang, X., Li, K. et al. (2017). A functional form‐stable phase change composite with high efficiency electro‐to‐thermal energy conversion. Applied Energy 190: 474–480.
138 138 Leng, J., Lan, X., Liu, Y., and Du, S. (2011). Shape‐memory polymers and their composites: stimulus methods and applications. Progress in Materials Science 56: 1077–1135.
139 139 Wu, W., Wu, W., and Wang, S. (2019). Form‐stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications.