Pathology of Genetically Engineered and Other Mutant Mice. Группа авторов

Pathology of Genetically Engineered and Other Mutant Mice - Группа авторов


Скачать книгу
alopecia in humans. Vet. Pathol. 48 (2): 513–524.

      46 46 Brommage, R., Powell, D.R., and Vogel, P. (2019). Predicting human disease mutations and identifying drug targets from mouse gene knockout phenotyping campaigns. Dis. Mod. Mech. 12 (5): dmm038224.

      47 47 Meehan, T.F., Conte, N., West, D.B. et al. (2017). Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nat. Genet. 49 (8): 1231–1238.

      48 48 Low, B.E., Krebs, M.P., Joung, J.K. et al. (2014). Correction of the Crb1rd8 allele and retinal phenotype in C57BL/6N mice via TALEN‐mediated homology‐directed repair. Invest. Ophthalmol. Vis. Sci. 55 (1): 387–395.

      49 49 Elmore, S.A., Cardiff, R., Cesta, M.F. et al. (2018). A review of current standards and the evolution of histopathology nomenclature for laboratory animals. ILAR J. 59 (1): 29–39.

      50 50 Dickinson, M.E., Flenniken, A.M., Ji, X. et al. (2016). High‐throughput discovery of novel developmental phenotypes. Nature 537 (7621): 508–514.

      51 51 Moore, B.A., Leonard, B.C., Sebbag, L. et al. (2018). Identification of genes required for eye development by high‐throughput screening of mouse knockouts. Commun. Biol. 1: 236.

      52 52 Rozman, J., Rathkolb, B., Oestereicher, M.A. et al. (2018). Identification of genetic elements in metabolism by high‐throughput mouse phenotyping. Nat. Commun. 9 (1): 288.

      53 53 Sundberg, J.P., Dadras, S.S., Silva, K.A. et al. (2017). Systematic screening for skin, hair, and nail abnormalities in a large‐scale knockout mouse program. PLoS One 12 (7): e0180682.

      54 54 Wang, T., Bu, C.H., Hildebrand, S. et al. (2018). Probability of phenotypically detectable protein damage by ENU‐induced mutations in the Mutagenetix database. Nat. Commun. 9 (1): 441.

      55 55 Wang, T., Zhan, X., Bu, C.H. et al. (2015). Real‐time resolution of point mutations that cause phenovariance in mice. Proc. Natl. Acad. Sci. U.S.A. 112 (5): E440–E449.

      56 56 Bogue, M.A., Philip, V.M., Walton, D.O. et al. (2020). Mouse Phenome Database: a data repository and analysis suite for curated primary mouse phenotype data. Nucleic Acids Res. 48 (D1): D716–D723.

      57 57 Schofield, P.N., Bard, J.B., Boniver, J. et al. (2004). Pathbase: a new reference resource and database for laboratory mouse pathology. Radiat. Prot. Dosim. 112 (4): 525–528.

      58 58 Schofield, P.N., Gruenberger, M., and Sundberg, J.P. (2010). Pathbase and the MPATH ontology. Community resources for mouse histopathology. Vet. Pathol. 47 (6): 1016–1020.

      59 59 Hayamizu, T.F., Mangan, M., Corradi, J.P. et al. (2005). The Adult Mouse Anatomical Dictionary: a tool for annotating and integrating data. Genome Biol. 6 (3): R29.

      60 60 Schofield, P.N., Sundberg, J.P., Sundberg, B.A. et al. (2013). The mouse pathology ontology, MPATH; structure and applications. J. Biomed. Semantics 4 (1): 18.

      61 61 Fisher, H.M., Hoehndorf, R., Bazelato, B.S. et al. (2016). DermO; an ontology for the description of dermatologic disease. J. Biomed. Semantics 7: 38.

      62 62 Sundberg, B.A., Schofield, P.N., Gruenberger, M., and Sundberg, J.P. (2009). A data‐capture tool for mouse pathology phenotyping. Vet. Pathol. 46 (6): 1230–1240.

      63 63 Sundberg, J.P., Sundberg, B.A., and Schofield, P. (2008). Integrating mouse anatomy and pathology ontologies into a phenotyping database: tools for data capture and training. Mamm. Genome 19 (6): 413–419.

      64 64 Keenan, C.M., Baker, J.F., Bradley, A.E. et al. (2015). International Harmonization of Nomenclature and Diagnostic Criteria (INHAND) progress to date and future plans. Toxicol. Pathol. 28 (1): 51–53.

      65 65 Keenan, C.M., Baker, J., Bradley, A. et al. (2015). International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): progress to date and future plans. Toxicol. Pathol. 43 (5): 730–732.

      66 66 Maronpot, R.R., Boorman, G.A., and Gaul, B.W. (1999). Pathology of the Mouse. Vienna, IL: Cache River Press.

      67 67 Suttie, A.W., Leininger, J.R., and Bradley, A.E. (2017). Boorman's Pathology of the Rat, 2e. San Diego: Academic Press.

      68 68 Rowe, D.W., Adams, D.J., Hong, S.H. et al. (2018). Screening gene knockout mice for variation in bone mass: analysis by μCT and histomorphometry. Curr. Osteoporos Rep. 16 (2): 77–94.

      69 69 DiTommaso, T., Jones, L.K., Cottle, D.L. et al. (2014). Identification of genes important for cutaneous function revealed by a large scale reverse genetic screen in the mouse. PLoS Genet. 10 (10): e1004705.

      70 70 Harding, S.D., Armit, C., Armstrong, J. et al. (2011). The GUDMAP database – an online resource for genitourinary research. Development 138 (13): 2845–2853.

      71 71 Lein, E.S., Hawrylycz, M.J., Ao, N. et al. (2007). Genome‐wide atlas of gene expression in the adult mouse brain. Nature 445 (7124): 168–176.

      72 72 Krishnan, A., Samtani, R., Dhanantwari, P. et al. (2014). A detailed comparison of mouse and human cardiac development. Pediatr. Res. 76 (6): 500–507.

      73 73 Talman, V., Teppo, J., Poho, P. et al. (2018). Molecular atlas of postnatal mouse heart development. J. Am. Heart Assoc. 7 (20): e010378.

      74 74 Amberger, J.S., Bocchini, C.A., Schiettecatte, F. et al. (2015). OMIM.org: Online Mendelian Inheritance in Man (OMIM(R)), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 43 (Database issue): D789–D798.

      75 75 McKusick, V.A. (2007). Mendelian Inheritance in Man and its online version, OMIM. Am. J. Hum. Genet. 80 (4): 588–604.

      76 76 Armit, C., Richardson, L., Venkataraman, S. et al. (2017). eMouseAtlas: an atlas‐based resource for understanding mammalian embryogenesis. Dev. Biol. 423 (1): 1–11.

      77 77 Armit, C., Richardson, L., Hill, B. et al. (2015). eMouseAtlas informatics: embryo atlas and gene expression database. Mamm. Genome 26 (9–10): 431–440.

      78 78 Richardson, L., Graham, L., Moss, J. et al. (2015). Developing the eHistology Atlas. Database 2015: bav105.

      79 79 Graham, E., Moss, J., Burton, N. et al. (2015). The atlas of mouse development eHistology resource. Development 142 (14): 2545.

      80 80 Stevenson, P., Richardson, L., Venkataraman, S. et al. (2011). The BioMart interface to the eMouseAtlas gene expression database EMAGE. Database 2011: bar029.

      81 81 Armit, C., Venkataraman, S., Richardson, L. et al. (2012). eMouseAtlas, EMAGE, and the spatial dimension of the transcriptome. Mamm. Genome 23 (9–10): 514–524.

      82 82 Kaufman, M.H. (1992). The Atlas of Mouse Development. London: Academic Press.

       John P. Sundberg, Dale A. Begley, Melissa L. Berry, Michelle N. Perry, David Shaw, and Paul N. Schofield

      Pathologists are meticulous about the accurate use of nomenclature when making a diagnosis, even though there are often numerous synonyms for the disease under investigation. Debates about the specificity of diagnostic terms and the consequences, particularly for genetics, of differences in nosological preferences, can be critical in coming to an understanding of disease etiology and prognosis. For example, differences in “lumping” and “splitting” diagnoses [1] can make the difference between discovering and missing a Genome Wide Association Study (GWAS) signal [2]. In spite of this, few pathologists and researchers are as careful about the accurate use of mouse genetic nomenclature, yet this is as important to the description of a novel mouse model for a human disease as the pathologic description of the lesions.

      Systematic genetic nomenclature expresses, in a succinct and precise way, the background of the strain under investigation, the presence of complex sequence variants of many types, and the genetic relationship of one strain to another. Understanding the fundamentals of genetic terminology is a key skill needed to design and interpret experiments using laboratory mice,


Скачать книгу