Pathology of Genetically Engineered and Other Mutant Mice. Группа авторов

Pathology of Genetically Engineered and Other Mutant Mice - Группа авторов


Скачать книгу
genetic nomenclature can be confusing at first, and is often considered to be unimportant by investigators. However, there are many sources of help and support, discussed above, and the effort needed to become fluent in the language of strains and mutants is much less than the potential effort needed to rescue badly planned experiments or recoup the costs involved in using the wrong mice. It is also essential for the replication of experiments, both yours and those whose resources you intend to use, and the sharing of your data. We hope that this commentary lays out clearly why an appreciation and functional knowledge of nomenclature is not only helpful but essential for those using mice as a model system.

      This work was supported in parts by grants from the National Institutes of Health (R01 CA089713 and HG000330).

      1 1 McKusick, V.A. (1969). On lumpers and splitters, or the nosology of genetic disease. Perspect Biol. Med. 12 (2): 298–312.

      2 2 Simon‐Sanchez, J. and Gasser, T. (2015). Parkinson disease GWAS: the question of lumping or splitting is back again. Neurology 84 (10): 966–967.

      3 3 Schofield, P.N., Bubela, T., Weaver, T. et al. (2009). Post‐publication sharing of data and tools. Nature 461 (7261): 171–173.

      4 4 Low, B.E., Kutny, P.M., and Wiles, M.V. (2016). Simple, efficient CRISPR‐Cas9‐mediated gene editing in mice: strategies and methods. Methods Mol. Biol. 1438: 19–53.

      5 5 Snell, G.D. (1941). Biology of the Laboratory Mouse, 1e. New York, NY: McGraw‐Hill.

      6 6 Husler, M.R., Beamer, W.G., Boggess, D. et al. (1998). Neoplastic and hyperplastic lesions in aging C3H/HeJ mice. J. Exp. Anim. Sci. 38 (4): 165–180.

      7 7 Sundberg, J.P., King, L.E. Jr., Bosenberg, M. et al. (2020). Animal models of skin disease. In: McKee's Pathology of the Skin with Clinical Correlations. 2, 5e (eds. E. Calonje, T. Brenn, A.H. Lazar and S.D. Billings), 1895–1917. China: Elsevier.

      8 8 Li, Q., Berndt, A., Sundberg, B.A. et al. (2016). Mouse genome‐wide association study identifies polymorphisms on chromosomes 4, 11, and 15 for age‐related cardiac fibrosis. Mamm Genome. 27 (5‐6): 179–190. https://doi.org/10.1007/s00335‐016‐9634‐y. Epub 2016 Apr 28.

      9 9 Giehl, K.A., Potter, C.S., Wu, B. et al. (2009). Hair interior defect in AKR/J mice. Clin. Exp. Dermatol. 34 (4): 509–517.

      10 10 Wu, B., Potter, C.S., Silva, K.A. et al. (2010). Mutations in sterol O‐acyltransferase 1 (Soat1) result in hair interior defects in AKR/J mice. J. Invest. Dermatol. 130 (11): 2666–2668.

      11 11 Davisson, M.T., Schmidt, C., Reeves, R.H. et al. (1993). Segmental trisomy as a mouse model for Down syndrome. Prog. Clin. Biol. Res. 384: 117–133.

      12 12 Bisaillon, J.J., Radden, L.A. 2nd, Szabo, E.T. et al. (2014). The retarded hair growth (rhg) mutation in mice is an allele of ornithine aminotransferase (Oat). Mol. Genet. Metabol. Rep. 1: 378–390.

      13 13 Fox, S. and Eicher, E.M. (1978). The retarded hair growth (rhg) mutation in mice is an allele of ornithine aminotransferase (Oat). Mouse News Lett. 58: 47.

      14 14 Griffen, A. (1951). tc – truncate. Mouse News Lett. 5: 31.

      15 15 Mulligan, M.K., Mozhui, K., Prins, P., and Williams, R.W. (2017). GeneNetwork: a toolbox for systems genetics. Methods Mol. Biol. 1488: 75–120.

      16 16 Li, Q., Philip, V.M., Stearns, T.M. et al. (2019). Quantitative trait locus and integrative genomics revealed candidate modifier genes for ectopic mineralization in mouse models of pseudoxanthoma elasticum. J. Invest. Dermatol. 139 (12): 2447–2457. e7.

      17 17 Chesler, E.J., Miller, D.R., Branstetter, L.R. et al. (2008). The Collaborative Cross at Oak Ridge National Laboratory: developing a powerful resource for systems genetics. Mamm. Genome 19 (6): 382–389.

      18 18 Philip, V.M., Sokoloff, G., Ackert‐Bicknell, C.L. et al. (2011). Genetic analysis in the Collaborative Cross breeding population. Genome Res. 21 (8): 1223–1238.

      19 19 Graham, J.B., Thomas, S., Swarts, J. et al. (2015). Genetic diversity in the collaborative cross model recapitulates human West Nile virus disease outcomes. mBio 6 (3): e00493–e00415.

      20 20 Zeiss, C.J., Gatti, D.M., Toro‐Salazar, O. et al. (2019). Doxorubicin‐induced cardiotoxicity in Collaborative Cross (CC) mice recapitulates individual cardiotoxicity in humans. G3 9 (8): 2637–2646.

      21 21 Gralinski, L.E., Ferris, M.T., Aylor, D.L. et al. (2015). Genome wide identification of SARS‐CoV susceptibility loci using the Collaborative Cross. PLoS Genet. 11 (10): e1005504.

      22 22 Konger, R.L., Derr‐Yellin, E., Hojati, D. et al. (2016). Comparison of the acute ultraviolet photoresponse in congenic albino hairless C57BL/6J mice relative to outbred SKH1 hairless mice. Exp. Dermatol. 25 (9): 688–693.

      23 23 Voigt, A.Y., Michaud, M., Tsai, K.Y. et al. (2019). Differential hairless mouse strain‐specific susceptibility to skin cancer and sunburn. J. Invest. Dermatol.

      24 24 Papale, L.A., Beyer, B., Jones, J.M. et al. (2009). Heterozygous mutations of the voltage‐gated sodium channel SCN8A are associated with spike‐wave discharges and absence epilepsy in mice. Hum. Mol. Genet. 18 (9): 1633–1641.

      25 25 Johnson, K.R., Tian, C., Gagnon, L.H. et al. (2017). Effects of Cdh23 single nucleotide substitutions on age‐related hearing loss in C57BL/6 and 129S1/Sv mice and comparisons with congenic strains. Sci. Rep. 7: 44450.

      26 26 Thomas, M.K., Devon, O.N., Lee, J.H. et al. (2001). Development of diabetes mellitus in aging transgenic mice following suppression of pancreatic homeoprotein IDX‐1. J. Clin. Invest. 108 (2): 319–329.

      27 27 Ohlrogge, W., Haag, F., Lohler, J. et al. (2002). Generation and characterization of ecto‐ADP‐ribosyltransferase ART2.1/ART2.2‐deficient mice. Mol. Cell. Biol. 22 (21): 7535–7542.

      28 28 Serreze, D.V., Chapman, H.D., Post, C.M. et al. (2001). Th1 to Th2 cytokine shifts in nonobese diabetic mice: sometimes an outcome, rather than the cause, of diabetes resistance elicited by immunostimulation. J. Immunol. 166 (2): 1352–1359.

      29 29 Dunn, L.C. (1937). Caracul, a dominant mutation. J. Heredity. 28: 334.

      30 30 Bubier, J.A., Sproule, T.J., Alley, L.M. et al. (2010). A mouse model of generalized non‐Herlitz junctional epidermolysis bullosa. J. Invest. Dermatol. 130 (7): 1819–1828.

      31 31 Sproule, T.J., Bubier, J.A., Grandi, F.C. et al. (2014). Molecular identification of collagen 17a1 as a major genetic modifier of laminin gamma 2 mutation‐induced junctional epidermolysis bullosa in mice. PLoS Genet. 10 (2): e1004068.

      32 32 Nadeau, J.H., Singer, J.B., Matin, A., and Lander, E.S. (2000). Analysing complex genetic traits with chromosome substitution strains. Nat. Genet. 24 (3): 221–225.

      33 33 Dietl, G., Langhammer, M., and Renne, U. (2004). Model simulations for genetic random drift in the outbred strain Fzt:DU. Arch. Anim. Breed 47 (6): 595–604.

      34 34 Svenson, K.L., Gatti, D.M., Valdar, W. et al. (2012). High‐resolution genetic mapping using the mouse diversity outbred population. Genetics 190 (2): 437–447.

      35 35 French, J.E., Gatti, D.M., Morgan, D.L. et al. (2015). Diversity outbred mice identify population‐based exposure thresholds and genetic factors that influence benzene‐induced genotoxicity. Environ. Health Perspect. 123 (3): 237–245.

      36 36 Broman, K.W., Gatti, D.M., Svenson, K.L. et al. (2019). Cleaning genotype data from diversity outbred mice. G3 9 (5): 1571–1579.

      37 37 Recla, J.M., Bubier, J.A., Gatti, D.M. et al. (2019). Genetic mapping in diversity outbred mice identifies a Trpa1 variant influencing late‐phase formalin response. Pain 160 (8): 1740–1753.

      38 38 Sigmon, J.S., Blanchard, M.W., Baric, R.S. et al. (2020). Content and performance of the MiniMUGA


Скачать книгу