Introducción al Machine Learning con MATLAB. Erik Cuevas Jiménez
de máquinas», en castellano), el tema de este libro, es una expresión usada para describir una colección amplia (y cada día creciente) de métodos de extracción de conocimiento diseñados para identificar, adecuadamente, información del sistema de manera empírica a partir de un conjunto de datos.
El Machine Learning representa una herramienta importante para la exploración de la extracción de conocimiento. Su principal objetivo reside en construir modelos que permitan describir posibles patrones estructurales en la información a partir de los datos, con el objetivo de tomar decisiones o hacer predicciones. El Machine Learning es un área que ha crecido vertiginosamente en los últimos años requiriendo, cada vez más, de técnicas sofisticadas que puedan tratar problemas más complejos de una manera flexible y con capacidades de adaptación. El Machine Learning abarca un numeroso conjunto de disciplinas tales como las matemáticas, la estadística, la informática, la ingeniería, etc.
El objetivo de este libro radica en brindar una visión particular de los principales métodos de Machine Learning y su implementación. La idea es proveer de los principales conceptos en los que se basan dichos métodos, y aplicarlos a problemas típicos del procesamiento de datos. Existe una gran cantidad de libros centrados solo en los aspectos teóricos de las técnicas de Machine Learning. Por otro lado, existe también una gran cantidad de bibliografía que brinda únicamente un nivel introductorio, sin considerar los principales detalles de los métodos. En general, en tales libros no se considera ni siquiera el aspecto práctico ni de implementación. Bajo dichas condiciones, con este libro se pretende llenar el espacio entre esas dos perspectivas. De esta manera, se intenta abordar específicamente las características importantes de los enfoques del Machine Learning, de tal modo que el lector pueda implementarlos y utilizarlos sin problemas a casos reales.
En la última década, el número de usuarios de Machine Learning ha crecido de forma espectacular. Partiendo de un círculo relativamente pequeño en los departamentos de Informática, Ingeniería y Matemáticas, los usuarios de Machine Learning ahora incluyen a estudiantes e investigadores de todas las áreas del conocimiento, así como a miembros de la industria, científicos de datos, emprendedores y entusiastas del Machine Learning. Este libro es el resultado de un desmantelamiento completo del plan de estudios estándar del Machine Learning en sus componentes más fundamentales, y un reensamblaje de esas piezas (cuidadosamente pulidas y organizadas), que creemos beneficiarán más a la audiencia cada vez mayor de estudiantes. Contiene descripciones intuitivas, pero rigurosas, de los conceptos más fundamentales y necesarios para analizar información a partir de datos.
En esta obra se presentan enfoques para la exploración y el análisis de datos. En particular, se discute acerca de los esquemas de Machine Learning y de Data Mining. Aunque el libro incluye diferentes aspectos matemáticos de la teoría de Machine Learning y de los operadores de reconocimiento de patrones, no debe ser considerado un libro meramente teórico. Su contenido se encuentra más relacionado con los aspectos prácticos de tales métodos, y su aplicación como herramientas de ciencias de la computación. El principal objetivo reside en brindar una visión unificada de los métodos de Machine Learning, de tal forma que se presentan los principios fundamentales, así como los métodos considerados esenciales.
Los esquemas de Machine Learning tratados en este libro son examinados con el objetivo de que sean implementados y utilizados. Esta obra, a diferencia de otras existentes sobre Machine Learning o ciencia de datos, ha sido escrita desde una perspectiva pedagógica. Su material ha sido tratado de tal forma que el lector es asistido para obtener una idea clara, pero, al mismo tiempo, rigurosa de cada método. En muchos libros se discute acerca de una gran variedad de métodos como un recetario sin ningún soporte teórico. Por otro lado, en otros libros también se consideran los enfoques de Machine Learning de forma solamente teórica, siendo no totalmente accesibles a estudiantes o profesionales de otras áreas ajenos a las ciencias de la informática, como lo son la administración o la economía. Por el contrario, se pretende hacer un compromiso entre ambos objetivos, presentando cada enfoque con el contenido teórico necesario, además de información de fácil implementación.
El libro provee, así, de los conceptos necesarios que habilitan al lector a implementar y modificar los métodos de Machine Learning, con el fin de obtener las habilidades proyectadas en las necesidades específicas de cada problema. Para ello, se introducen numerosos ejemplos de problemas y soluciones, con los que se demuestra la potencia de tales métodos. Se provee también, con cada enfoque, de ejemplos simples fáciles de entender, preparados de una manera intuitiva al lector, con los que esperar el resultado fácilmente. Esto contrasta con la mayoría de los libros de esta área, donde se presentan ejemplos de tal complejidad que resulta difícil el entendimiento del propio problema, sin contar con la comprensión de su solución.
La obra se basa enteramente en el software MATLAB®, el cual es considerado hoy día como un estándar en la programación científica e industrial. MATLAB contiene ya, dentro de sus funciones, poderosos métodos numéricos, que pueden ser adaptados a aplicaciones particulares. Bajo tales condiciones, el usuario puede estar más concentrado en la estructura de su aplicación que en la programación misma. Presentar el código de los programas como ayuda al lector constituye uno de los principales puntos del libro en el área de las ciencias de la informática. Además, colgarlos en una página web puede derivar en su desaparición con el transcurso de los años. Así, una de las principales características de este libro reside en que todos los enfoques presentados han sido programados en MATLAB, y su código se presenta impreso en el libro. Resulta importante hacer notar, igualmente, que los códigos contenidos en el libro no intentan ser eficientes o competitivos, desde la perspectiva de la programación. En lugar de esto, se ha decidido presentar el código de la implementación de cada método de una forma pedagógica, de tal manera que el lector comprenda cómo el método se comporta y ejecuta.
Con la notación usada en el libro, se asume que el lector se halla familiarizado con conceptos básicos de álgebra, geometría, teoría de conjuntos y cálculo. En términos generales, un lector no aprovechará esta obra si no tiene la intención de implementar informáticamente los métodos presentados. Bajo tales condiciones, se considera como prerrequisito contar con conocimientos básicos de programación.
Debido a su contenido y a la estructura del libro, este resulta adecuado para estudiantes y profesionales en el área de ciencias de la informática, inteligencia artificial, investigación de operaciones, matemáticas aplicadas y algunas otras disciplinas. De igual manera, muchos ingenieros que trabajan en la industria pueden encontrar interesante el contenido de la obra. En este caso, las sencillas exposiciones y el código provisto pueden servir de ayuda para la rápida solución a problemas de extracción de información a partir de datos que, normalmente, surgen en varios nichos y proyectos industriales o comerciales.
Escribir un libro de Machine Learning parece intrascendente. Existen ya varios libros de texto y de consulta dirigidos a lectores con diferentes niveles de conocimiento en la materia. Sin embargo, de las decenas de obras que existen, estos se reducen a prácticamente muy pocos, si se restringen las opciones a los escritos en español. Bajo tales circunstancias, cuando se concibió el proyecto de escritura se decidió que era necesario tener algo que decir sobre el orden, la profundidad y la manera de exponer los conceptos del Machine Learning en nuestro idioma.
Nuestra premisa original fue que los métodos de Machine Learning pueden exponerse de manera comprensible para lectores con poco entrenamiento matemático. En consecuencia, intentamos escribir un libro cuyo contenido fuese no solo entendible, sino aplicable por cualquier estudiante de licenciatura. Aunque algunos conceptos pueden ser complejos para su comprensión cabal, tratamos de exponerlos con claridad y sin pretender disimular su dificultad implícita. Sin sacrificar las necesidades inmediatas del lector, subrayamos la importancia de que se comprendan los métodos descritos, bajo el supuesto de que, a veces, resulta preferible no usar tales métodos a usarlos mal.
En el largo proceso de escribir el libro, nuestra perspectiva ha variado. Planeado para un curso completo, el material que presentamos puede cubrirse en un semestre. El libro se compone de 10 capítulos. Los detalles en el tratamiento de cada uno de ellos se describen a continuación.