Biomolecular Engineering Solutions for Renewable Specialty Chemicals. Группа авторов
8, 1481.
3 Ashiuchi, M., Shimanouchi, K., Horiuchi, T., Kamei, T., & Misono, H. (2006). Genetically engineered poly‐γ‐glutamate producer from Bacillus subtilis ISW1214. Bioscience, Biotechnology, and Biochemistry, 70(7), 1794–1797.
4 Babaei, M., Rueksomtawin Kildegaard, K., Niaei, A., Hosseini, M., Ebrahimi, S., Sudarsan, S., … & Borodina, I. (2019). Engineering oleaginous yeast as the host for fermentative succinic acid production from glucose. Frontiers in Bioengineering and Biotechnology, 7, 361.
5 Baebprasert, W., Jantaro, S., Khetkorn, W., Lindblad, P., & Incharoensakdi, A. (2011). Increased H2 production in the cyanobacterium Synechocystis sp. strain PCC 6803 by redirecting the electron supply via genetic engineering of the nitrate assimilation pathway. Metabolic Engineering, 13(5), 610–616.
6 Balabanova, L. A., Gafurov, Y. M., Pivkin, M. V., Terentyeva, N. A., Likhatskaya, G. N., & Rasskazov, V. A. (2012). An extracellular S1‐type nuclease of marine fungus Penicillium melinii. Marine Biotechnology, 14(1), 87–95.
7 Bandyopadhyay, A., Stöckel, J., Min, H., Sherman, L. A., & Pakrasi, H. B. (2010). High rates of photobiological H 2 production by a cyanobacterium under aerobic conditions. Nature Communications, 1(1), 1–7.
8 Bentley, F. K., Zurbriggen, A., & Melis, A. (2014). Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Molecular Plant, 7(1), 71–86.
9 Ben‐Zur, N., & Goldman, D. M. (2007). γ‐Poly glutamic acid: a novel peptide for skin care. Cosmetics and Toiletries, 122(4).
10 Bhattacharyya, D., Hestekin, J. A., Brushaber, P., Cullen, L., Bachas, L. G., & Sikdar, S. K. (1998). Novel poly‐glutamic acid functionalized microfiltration membranes for sorption of heavy metals at high capacity. Journal of Membrane Science, 141(1), 121–135.
11 Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissenbach, J., … & Sorokin, A. (2001). The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Research, 11(5), 731–753.
12 Bothfeld, W., Kapov, G., & Tyo, K. E. (2017). A glucose‐sensing toggle switch for autonomous, high productivity genetic control. ACS Synthetic Biology, 6(7), 1296–1304.
13 Brower, V. (2008). Back to nature: extinction of medicinal plants threatens drug discovery.
14 Budde, C. F., Riedel, S. L., Willis, L. B., Rha, C., & Sinskey, A. J. (2011). Production of poly (3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Applied and Environmental Microbiology, 77(9), 2847–2854.
15 Buldum, G., Bismarck, A., & Mantalaris, A. (2018). Recombinant biosynthesis of bacterial cellulose in genetically modified Escherichia coli. Bioprocess and Biosystems Engineering, 41(2), 265–279.
16 Cameron, V., & Uhlenbeck, O. C. (1977). 3'‐Phosphatase activity in T4 polynucleotide kinase. Biochemistry, 16(23), 5120–5126.
17 Candela, T., & Fouet, A. (2006). Poly‐gamma‐glutamate in bacteria. Molecular Microbiology, 60(5), 1091–1098.
18 Cannon, R. E., & Anderson, S. M. (1991). Biogenesis of bacterial cellulose. Critical Reviews in Microbiology, 17(6), 435–447.
19 Cao, M., Feng, J., Sirisansaneeyakul, S., Song, C., & Chisti, Y. (2018). Genetic and metabolic engineering for microbial production of poly‐γ‐glutamic acid. Biotechnology Advances, 36(5), 1424–1433.
20 Carrieri, D., Wawrousek, K., Eckert, C., Yu, J., & Maness, P. C. (2011). The role of the bidirectional hydrogenase in cyanobacteria. Bioresource Technology, 102(18), 8368–8377.
21 Castro, C., Cleenwerck, I., Trček, J., Zuluaga, R., De Vos, P., Caro, G., … & Ganan, P. (2013). Gluconacetobacter medellinensis sp. nov., cellulose‐and non‐cellulose‐producing acetic acid bacteria isolated from vinegar. International Journal of Systematic and Evolutionary Microbiology, 63(3), 1119–1125.
22 Castro, C., Zuluaga, R., Álvarez, C., Putaux, J. L., Caro, G., Rojas, O. J., … & Gañán, P. (2012). Bacterial cellulose produced by a new acid‐resistant strain of Gluconacetobacter genus. Carbohydrate Polymers, 89(4), 1033–1037.
23 Cerritelli, S. M., & Crouch, R. J. (2009). Ribonuclease H: the enzymes in eukaryotes. The FEBS Journal, 276(6), 1494–1505.
24 Chatterjee, R., Millard, C. S., Champion, K., Clark, D. P., & Donnelly, M. I. (2001). Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Applied and Environmental Microbiology, 67(1), 148–154.
25 Chen, D., Yuan, X., Liang, L., Liu, K., Ye, H., Liu, Z., … & Zhang, Y. (2019). Overexpression of acetyl‐CoA carboxylase increases fatty acid production in the green alga Chlamydomonas reinhardtii. Biotechnology Letters, 41(10), 1133–1145.
26 Chen, F., Tholl, D., Bohlmann, J., & Pichersky, E. (2011). The family of terpene synthases in plants: a mid‐size family of genes for specialized metabolism that is highly diversified throughout the kingdom. The Plant Journal, 66(1), 212–229.
27 Chen, G. Q. (2009). A microbial polyhydroxyalkanoates (PHA) based bio‐and materials industry. Chemical Society Reviews, 38(8), 2434–2446.
28 Chen, H., He, X., Geng, H., & Liu, H. (2014). Physiological characterization of ATP‐citrate lyase in Aspergillus niger. Journal of Industrial Microbiology & Biotechnology, 41(4), 721–731.
29 Chen, W. J. (2002). Functions of hyaluronan in wound repair. Proceedings of an International Meeting, September 2000, North East Wales Institute, UK. doi:https://doi.org/10.1533/9781845693121.147.
30 Chen, X., Yang, W., Zhang, L., Wu, X., Cheng, T., & Li, G. (2017). Genome‐wide identification, functional and evolutionary analysis of terpene synthases in pineapple. Computational Biology and Chemistry, 70, 40–48.
31 Chen, Y. H., Li, J., Liu, L., Liu, H. Z., & Wang, Q. (2012). Optimization of flask culture medium and conditions for hyaluronic acid production by a Streptococcus equisimilis mutant nc2168. Brazilian Journal of Microbiology, 43(4), 1553–1561.
32 Chen, Y., & Nielsen, J. (2016). Biobased organic acids production by metabolically engineered microorganisms. Current Opinion in Biotechnology, 37, 165–172.
33 Chien, A., Edgar, D. B., & Trela, J. M. (1976). Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. Journal of Bacteriology, 127(3), 1550–1557.
34 Chien, L. J., & Lee, C. K. (2007). Hyaluronic acid production by recombinant Lactococcus lactis. Applied Microbiology and Biotechnology, 77(2), 339–346.
35 Chinthapalli, R., Iffland, K., Aeschelmann, F., Raschka, A., & Carus, M. (2018). Succinic Acid: New Bio‐Based Building Block with a Huge Market and Environmental Potential? Nova‐Institut GmbH.
36 Choi, Y. N., & Park, J. M. (2016). Enhancing biomass and ethanol production by increasing NADPH production in Synechocystis sp. PCC 6803. Bioresource Technology, 213, 54–57.
37 Chong, B. F., Blank, L. M., Mclaughlin, R., & Nielsen, L. K. (2005). Microbial hyaluronic acid production. Applied Microbiology and Biotechnology, 66(4), 341–351.
38 Cui, Z., Gao, C., Li, J., Hou, J., Lin, C. S. K., & Qi, Q. (2017). Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH. Metabolic Engineering, 42, 126–133.
39 Dexter, J., & Fu, P. (2009). Metabolic engineering of cyanobacteria for ethanol production. Energy & Environmental Science, 2(8), 857–864.
40 Dexter, J., Armshaw, P., Sheahan, C., & Pembroke, J. T. (2015). The state of autotrophic ethanol production in Cyanobacteria. Journal of Applied Microbiology, 119(1), 11–24.
41 Dragone, G., Fernandes, B. D., Vicente, A. A., & Teixeira, J. A. (2010). Third generation biofuels from microalgae. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology,