Superatoms. Группа авторов
and NaCl2. J. Chem. Phys. 107: 3867–3875.
48 48 Bartlett, N. and Lohmann, D.H. (1962). Dioxygenyl hexafluoroplatinate (V), O2 + [PtF6] −. Proc. Chem. Soc., London 3: 115–116.
49 49 Bartlett, N. (1962). Xenon hexafluoroplatinate (V) Xe+ [PtF6] −. Proc. Chem. Soc., London 6: 218.
50 50 Giri, S., Behera, S., and Jena, P. (2014). Superalkalis and superhalogens as building blocks of supersalts. J. Phys. Chem. A 118: 638–645.
51 51 Koirala, P., Willis, M., Kiran, B. et al. (2010). Superhalogen properties of fluorinated coinage metal clusters. J. Phys. Chem. C 114: 16018–16024.
52 52 Willis, M., Götz, M., Kandalam, A.K. et al. (2010). Hyperhalogens: discovery of a new cass of highly electronegative species. Angew. Chem. Int. Ed. 49: 8966–8970.
53 53 Knight, D.A., Zidan, R., Lascola, R. et al. (2013). Synthesis, characterization, and atomistic modeling of stabilized highly pyrophoric Al(BH4)3 via the formation of the hypersalt K[Al(BH4)4]. J. Phys. Chem. C 117: 19905–19915.
54 54 Chen, G., Zhao, T., Wang, Q., and Jena, P. (2019). Rational design of stable dianions and the concept of superchalcogens. J. Phys. Chem. A 123: 5753–5761.
55 55 Pyykkö, P. and Runeberg, N. (2002). Icosahedral Wau12: a predicted closed‐shell species, stabilized by aurophilic attraction and relativity and in accord with the 18‐electron rule. Angew. Chem. Int. Ed. 41: 2174–2176.
56 56 Li, X., Kiran, B., Li, J. et al. (2002). Experimental observation and confirmation of icosahedral W@Au12 and Mo@Au12 molecules. Angew. Chem. Int. Ed. 41: 4786–4789.
57 57 Zhai, H.‐J., Li, J., and Wang, L.‐S. (2004). Icosahedral gold cage clusters: M@Au12− (M = V, Nb, and Ta). J. Chem. Phys. 121: 8369–8374.
58 58 Cui, L.‐F., Huang, X., Wang, L.‐M. et al. (2006). Pb122−: Plumbaspherene. J. Phys. Chem. A 110: 10169–10172.
59 59 Cui, L.‐F., Huang, X., Wang, L.‐M. et al. (2006). Sn122−: Stannaspherene. J. Am. Chem. Soc. 128: 8390–8391.
60 60 Dognon, J., Clavaguera, C., and Pyykko, P. (2007). Towards a 32‐electron principle: Pu@Pb12 and related systems. Angew. Chem. Int. Ed. 46: 1427–1430.
61 61 Manna, D., Sirohiwal, A., and Ghanty, T.K. (2014). Pu@C24: a new example satisfying the 32‐electron principle. J. Phys. Chem. C 118: 7211–7221.
62 62 Dognon, J.P., Clavaguéra, C., and Pyykkö, P. (2009). A predicted organometallic series following a 32‐electron principle: An@C28 (An = Th, Pa+, U2+, Pu4+). J. Am. Chem. Soc. 131: 238–243.
63 63 Dognon, J.P., Clavaguéra, C., and Pyykkö, P. (2010). Chemical properties of the predicted 32‐electron systems Pu@Sn12 and Pu@Pb12. C. R. Chim. 13: 884–888.
64 64 Dognon, J.P., Clavaguéra, C., and Pyykkö, P. (2012). A new, centered 32‐electron system: the predicted [U@Si20]6−‐like isoelectronic series. Chem. Sci. 3: 2843–2848.
65 65 Manna, D. and Ghanty, T.K. (2012). Prediction of a new series of thermodynamically stable actinide encapsulated fullerene systems fulfilling the 32‐electron principle. J. Phys. Chem. C 116: 25630–25641.
66 66 Dai, X., Yang Gao, Y., Jiang, W. et al. (2015). U@C28: the electronic structure induced by the 32‐electron principle. Phys. Chem. Chem. Phys. 17: 23308–23311.
67 67 Jin, J., Pan, S., Jin, X. et al. (2019). Octacarbonyl anion complexes of the late lanthanides Ln(CO)8− (Ln=Tm, Yb, Lu) and the 32‐electron rule. Chem. Eur. J. 25: 3229–3234.
68 68 Guo, J.‐C., Feng, L.‐Y., Dong, C., and Zhai, H.‐J. (2020). A designer 32‐electron superatomic CBe8H12 cluster: core–shell geometry, octacoordinated carbon, and cubic aromaticity. New J. Chem. 44: 7286–7292.
69 69 Schleyer, P.V.R. (2001). Introduction: aromaticity. Chem. Rev. 101: 1115–1117.
70 70 Nenner, I. and Schulz, G.J. (1975). Temporary negative ions and electron affinities of benzene and N‐heterocyclic molecules: pyridine, pyridazine, pyrimidine, pyrazine, and s‐triazine. J. Chem. Phys. 62: 1747–1758.
71 71 Child, B.Z., Giri, S., Gronert, S., and Jena, P. (2014). Aromatic superhalogens. Chem. Eur. J. 20: 4736–4745.
72 72 Giri, S., Child, B.Z., and Jena, P. (2014). Organic superhalogens. ChemPhysChem 15: 2903–2908.
73 73 Driver, N. and Jena, P. (2018). Electron affinity of modified benzene. Int. J. Quantum Chem. 118: e25504.
74 74 Wentworth, W.E., Limero, T., and Chen, E.C.M. (1987). Electron affinities of hexafluorobenzene and pentafluorobenzene. J. Phys. Chem. 91: 241.
75 75 Chen, E.C.M. and Wentworth, W.E. (1975). A comparison of experimental determinations of electron affinities of pi charge transfer complex acceptors. J. Chem. Phys. 63: 3183.
76 76 Li, X., Kuznetsov, A.E., Zhang, H.‐F. et al. (2001). Observation of all‐metal aromatic molecules. Science 291: 859–861.
77 77 Plesek, J., Jelinek, T., Stibr, B., and Hermanek, S. (1988). New monocarbaboranes from stepwise degradation of lcosahedral 1,2‐and 1,7‐C2B10H12 dicarbaboranes. J. Chem. Soc. Chem. Commun.: 348–349.
78 78 Jelinek, T., Stibr, B., Plesek, J. et al. Eight‐vertex polyhedral monocarbaborane chemistry. Three closo anions, [CB7H8]−, [CB7H7I]− and [CB7H6I2]−. Preparation and structural studies. J. Chem. Soc. Dalton Trans. 995: 431–437.
79 79 Jelinek, T., Stibr, B., Holub, J. et al. (2001). Monocarbaborane chemistry. Preparation and characterisation of [4‐CB8H9]−, the ‘missing’ closo‐carbaborane anion. Chem. Commun.: 1756–1757.
80 80 Stíbr, B., Tok, O.L., Milius, W. et al. (2002). The [closo‐2‐CB6H7]− ion: the first representative of the 7‐vertex monocarbaborane series. Angew. Chem. Int. Ed. 41: 2126–2128.
81 81 Pathak, B., Samanta, D., Ahuja, R., and Jena, P. (2011). Borane derivatives: a new class of super‐ and hyperhalogens. ChemPhysChem 12: 2423–2428.
82 82 Kumar, V. and Kawazoe, Y. (2002). Metal‐encapsulated icosahedral superatoms of germanium and tin with large gaps: Zn@Ge12 and Cd@Sn12. Appl. Phys. Lett. 80: 859–861.
83 83 Cui, L.‐F., Huang, X., Wang, L.‐M. et al. (2007). Endohedral stannaspherenes M@Sn12−: a rich class of stable molecular cage clusters. Angew. Chem. Int. Ed. 46: 742–745.
84 84 Kandalam, A.K., Chen, G., and Jena, P. (2008). Unique magnetic coupling between Mn doped stannaspherenes Mn@Sn12. Appl. Phys. Lett. 92: 143109.
85 85 Neukermans, S., Janssens, E., Chen, Z.F. et al. (2004). Extremely stable metal‐encapsulated AlPb10+ and AlPb12+ clusters: mass‐spectrometric discovery and density functional theory study. Phys. Rev. Lett. 92: 163401.
86 86 Esenturk, E.N., Fettinger, J., Lam, Y.‐F., and Eichhorn, B. (2004). [Pt@ Pb12]2−. Angew. Chem. Int. Ed. 43: 2132–2134.
87 87 Zintl, E., Goubeau, J., and Dullenkopf, W. (1931). Metals and alloys. I. Saltlike compounds and intermetallic phases of sodium in liquid ammonia. Z. Phys. Chem. 154: 1–46.
88 88 Schild, D., Pflaum, R., Sattler, K., and Recknagel, E. (1987). Stability of free intermetallic compound clusters: lead/antimony and bismuth/ antimony. J. Phys. Chem. 91: 2649–2653.
89 89 Wheeler, R., LaiHing, K., Wilson, W., and Duncan, M. (1988). Growth patterns in binary clusters of Group IV and V metals. J. Chem. Phys. 88: 2831–2839.
90 90 Farley, R.W. and Castleman, A.W. (1989). Observation of gas phase anionic bismuth zintl ions. J. Am. Chem. Soc. 111: 2734–2735.
91 91 Lips, F. and Dehnen, S. (2011). Neither electron precise nor in accordance with Wade−Mingos rules: the ternary cluster anion [Ni2Sn7Bi5] 3−. Angew. Chem. Int. Ed. 50: 955–959.
92 92 Goicoechea, J.M. and Sevov, S.C. (2006). Deltahedral germanium clusters: insertion of transition‐metal atoms and addition of organometallic fragments. J. Am. Chem. Soc. 128: 4155–4161.
93 93 Sun, Z.‐M., Zhao, Y.‐F., Li, J., and Wang, L.‐S. (2009). Diversity of functionalized germanium