Alternative Liquid Dielectrics for High Voltage Transformer Insulation Systems. Группа авторов
ester has no hazardous effect to the environment. Therefore, in comparison to the MO, natural ester is considered as a prospective replacement for dielectric applications.
References
1 1 Fofana, I. (2013). 50 years in the development of insulating liquids. IEEE Electr. Insul. Mag. 29 (5): 13–25.
2 2 Rakesh, C. and Thomas, M.J. (2016). Pongamia oil, an eco‐friendly alternative for mineral oil used in high voltage transformers. In Proc. 2016 IEEE Int. Conf. Dielectr. ICD 2016, vol. 2, pp. 959–962.
3 3 Martins, M. (2010). Vegetable oils, an alternative to mineral oil for power transformers‐experimental study of paper aging in vegetable oil versus mineral oil. IEEE Electr. Insul. Mag. 26 (6): 7–13.
4 4 Farade, R.A., Wahab, N.I.B.A., Mansour, D.E.A. et al. (2020). Investigation of the dielectric and thermal properties of non‐edible cottonseed oil by infusing h‐BN nanoparticles. IEEE Access 8: 76204–76217.
5 5 Martins, M.A.G. (2010). Correction to vegetable oils, an alternative to mineral oil for power transformers–experimental study of paper aging in vegetable oil versus mineral oil. IEEE Electr. Insul. Mag. 26 (6): 7–13.
6 6 Wilhelm, H.M., Stocco, M.B.C., Tulio, L. et al. (2013). Edible natural ester oils as potential insulating fluids. IEEE Trans. Dielectr. Electr. Insul. 20 (4): 1395–1401.
7 7 Das, A.K., Shill, D.C., and Chatterjee, S. (2020). Potential of coconut oil as a dielectric liquid in distribution transformers. IEEE Electr. Insul. Mag. 36 (6): 36–46.
8 8 Beltrán, N., Palacios, E., and Blass, G. (2017). Potential of Jatropha curcas oil as a dielectric fluid for power transformers. IEEE Electr. Insul. Mag. 33 (2): 8–15.
9 9 Sitorus, H.B.H., Beroual, A., Setiabudy, R., and Bismo, S. (2015). Pre‐breakdown phenomena in new vegetable oil – based jatropha curcas seeds as substitute of mineral oil in high voltage equipment. IEEE Trans. Dielectr. Electr. Insul. 22 (5): 2442–2448.
10 10 Trnka, P., Mentlik, V., and Svoboda, M. (2014). Ecologically acceptable insulating liquids for electrical appliances. In Proc. 2014 IEEE 18th Int. Conf. Dielectr. Liq. ICDL 2014, pp. 3–6.
11 11 Oommen, T.V. (2002). Vegetable oils for liquid‐filled transformers. IEEE Electr. Insul. Mag. 18 (1): 6–11.
12 12 Dung, N.V. and Huong, H.L. (2020). The effect of antioxidants on the physical and chemical properties of rice oil, corn oil, peanut oil and Kraft paper. IEEE Trans. Dielectr. Electr. Insul. 27 (5): 1698–1706.
13 13 Kumar, S.S., Iruthayarajan, M.W., Bakrutheen, M., and Kannan, S.G. (2016). Effect of antioxidants on critical properties of natural esters for liquid insulations. IEEE Trans. Dielectr. Electr. Insul. 23 (4): 2068–2078.
14 14 Du, B.X. and Li, X.L. (2017). Dielectric and thermal characteristics of vegetable oil filled with BN nanoparticles. IEEE Trans. Dielectr. Electr. Insul. 24 (2): 956–963.
15 15 Carcedo, J., Fernandez, I., Ortiz, A. et al. (2016). Quantitative study on the aging of kraft paper in vegetable oils. IEEE Electr. Insul. Mag. 32 (6): 29–35.
16 16 Xu, Y., Qian, S., Liu, Q., and Wang, Z. (2014). Oxidation stability assessment of a vegetable transformer oil under thermal aging. IEEE Trans. Dielectr. Electr. Insul. 21 (2): 683–692.
17 17 Carcedo, J., Fernández, I., Ortiz, A. et al. (2015). Aging assessment of dielectric vegetable oils. IEEE Electr. Insul. Mag. 31 (6): 13–21.
18 18 Perkasa, C.Y., Lelekakis, N., Wijaya, J., and Martin, D. (2012). Investigating bubble formation in vegetable and mineral oil impregnated transformer paper insulation systems. In Universities Power Engineering Conference (AUPEC), pp. 1–5.
19 19 Rapp, K.J., Corkran, J., McShane, C.P., and Prevost, T.A. (2009). Lightning impulse testing of natural ester fluid gaps and insulation interfaces. IEEE Trans. Dielectr. Electr. Insul. 16 (6): 1595–1603.
20 20 Nor, S.F.M., Azis, N., Jasni, J. et al. (2017). Investigation on the electrical properties of palm oil and coconut oil based TiO2 nanofluids. IEEE Trans. Dielectr. Electr. Insul. 24 (6): 3432–3442.
21 21 Li, J., Zhang, Z., Grzybowski, S., and Zahn, M. (2012). A new mathematical model of moisture equilibrium in mineral and vegetable oil‐paper insulation. IEEE Trans. Dielectr. Electr. Insul. 19 (5): 1615–1622.
22 22 Perrier, C., Marugan, M., and Beroual, A. (2012). DGA comparison between ester and mineral oils. IEEE Trans. Dielectr. Electr. Insul. 19 (5): 1609–1614.
23 23 Jovalekic, M., Vukovic, D., and Tenbohlen, S. (2011). Dissolved gas analysis of alternative dielectric fluids. In IEEE International Conference on Dielectric Liquids (ICDL), pp. 2–5.
24 24 Wang, Z., Yi, X., Huang, J. et al. (2012). Fault gas generation in natural‐ester fluid under localized thermal faults. IEEE Electr. Insul. Mag. 28 (6): 45–56.
25 25 Martin, D., Lelekakis, N., and Davydov, V. (2010). Preliminary results for dissolved gas transformer. IEEE Electr. Insul. Mag. 26 (5): 41–48.
26 26 Maharana, M., Nayak, S.K., and Sahoo, N. (2018). Karanji oil as a potential dielectrics liquid for transformer. IEEE Trans. Dielectr. Electr. Insul. 25 (5): 1871–1879.
27 27 McShane, C.P. (2002). Vegetable‐oil‐based dielectric coolant. IEEE Ind. Appl. Mag. 8 (3): 34–41.
28 28 Bremmer, B.J. and Larry, P. (2008). Biobased lubricants market study, United Soybean Board.
29 29 Azmi, K., Ahmad, A., and Kamarol, M. (2015). Study of dielectric properties of a potential RBD palm oil and RBD soybean oil mixture as insulating liquid in transformer. J. Electr. Eng. Technol. 10 (5): 2105–2119.
30 30 Dušica, I.S., Jovanka, L.D., and Slavica, S.A. (2010). Fatty acid composition of various soybean products. Food Feed Res. 2: 65–70.
31 31 Cannon, G.S. and Honary, L.A.T. (2000). Soybean based transformer oil and transmission line fluid. US 6159913A.
32 32 Egbuna, S.O., Ude, O.C., and Ude, C.N. (2016). Suitability of soybean seed oil as transformer oil. Int. J. Eng. Sci. Res. Technol. 5 (10): 105–112.
33 33 Masarakall, V.H., Sikdar, D.C., and Madalageri, S.B. (2015). Development of new dielectric liquid from Pongamia oil as alternative for transformer oil. Int. J. Tech. Res. Appl. 3: 304–309.
34 34 Bobade, S.N. and Khyade, V.B. (2012). Detail study on the properties of Pongamia pinnata (Karanja) for the production of biofuel. Res. J. Chem. Sci. 2 (7): 16–20.
35 35 Berchmans, H.J. and Hirata, S. (2008). Biodiesel production from crude Jatropha curcas seed oil with a high content of free fatty acids. Bioresour. Technol. 99: 1716–1721.
36 36 Sitorus, H.B.H., Setiabudy, R., Bismo, S., and Beroual, A. (2018). Jatropha curcas methyl ester oil obtaining as vegetable insulating oil. IEEE Trans. Dielectr. Electr. Insul. 23 (4): 2021–2028.
37 37 Zamiri, R., Zakaria, A., Ahangar, H.A. et al. (2010). Fabrication of silver nanoparticles dispersed in palm oil using a laser. Int. J. Mol. Sci. 11 (11): 4764–4770.
38 38 Rajab, A., Sulaeman, A., Sudirham, S., and Suwarno (2011). A comparison of dielectric properties of palm oil with mineral and synthetic types insulating liquid under temperature variation. ITB J. Eng. Sci. 43 (3): 191–208.
39 39 Abdelmalik, A.A. (2014). Chemically modified palm kernel oil ester: a possible sustainable alternative insulating fluid. Sustain. Mater. Technol. 1–2: 42–51.
40 40 Suwarno, F., Stitinjak, S.I., and Imsak, L. (2003). Study on characteristic of palm oil and it’s derivative as liquid insulating materials. In 7th International Conference on Properties and Applications of Dielectric Materials, June 1–5, Nagoya, pp. 495–498.
41 41 Abdullah, U.U., Bashi, S.M., Yunus, R., and Mohibullah, N.A. (2004). The potentials of palm oil as a dielectric fluid. In IEEE National Power & Energy Conference.
42 42 Aditama, S. (2005). Dielectric properties of palm oils as liquid insulating materials: effects of fat content. IEEE Electr. Insul. Mater. 1: 91–94.
43 43