Marine Mussels. Elizabeth Gosling
Australia, 1988 (eds F.E. Wells, D.I. Walker, H. Kirkham & R. Lethbridge), pp. 693–712. Western Australian Museum, Perth, WA.
41 Morton, B. (1992) The evolution and success of the heteromyarian form in the Mytiloida. In: The Mussel Mytilus: Ecology, Physiology, Genetics and Culture (ed E.M. Gosling), pp. 21–52. Elsevier Science Publishers B.V., Amsterdam.
42 Morton, B. (1996) The evolutionary history of the Bivalvia. In: Origin and Evolutionary Radiation of the Mollusca (ed J.D. Taylor), pp. 337–359. Oxford University Press, Oxford.
43 Morton, B. (2015) Evolution and adaptive radiation in the Mytiloidea (Bivalvia): clues from the pericardial–posterior byssal retractor musculature complex. Molluscan Research, 35, 227–245.
44 Morton, B., Dinesen, G.E. & Ockelmann, K.W. (2016) Functional morphology, biology and sexual strategy of the circumboreal, adventitious crypt‐building, Crenella decussata (Bivalvia: Mytiloidea: Crenellidae). Journal of the Marine Biological Association of the UK, 96, 1597–1616.
45 Ockelmann, K.W. & Dinesen, G.E. (2009) Systematic relationship of the genus Adula and its descent from a Mytilus‐like ancestor (Bivalvia, Mytilidae, Mytilinae). Steenstrupia, 30, 141–152.
46 Oliver, P.G. (2015) Description and morphology of the ‘Juan de Fuca vent mussel’, Benthomodiolus erebus sp. n. (Bivalvia, Mytilidae, Bathymodiolinae): ‘Phylogenetically basal but morphologically advanced’. Zoosystematics and Evolution, 91, 151–165.
47 Orphan, V.J. & Hoehler, T.M. (2011) Hydrogen for dinner. Nature, 476, 154–155.
48 Petersen, J.M., Zielinski, F.U., Pape, T., Seifert, R., Moraru, C., Amann, R. et al. (2011) Hydrogen is an energy source for hydrothermal vent symbioses. Nature, 476, 176–180.
49 Plazzi, F. & Passamonti, M. (2010) Towards a molecular phylogeny of mollusks: bivalves’ early evolution as revealed by mitochondrial genes. Molecular Phylogenetics and Evolution, 57, 641–657.
50 Plazzi, F., Ceregato, A., Taviani, M. & Passamonti, M. (2011) A molecular phylogeny of bivalve mollusks: ancient radiations and divergences as revealed by mitochondrial genes. PLOS One, 6, e27147.
51 Ponder, W. & Lindberg, D.R. (2008) Molluscan evolution and phylogeny an introduction. In: Phylogeny and Evolution of the Mollusca (eds W. Ponder & D.R. Lindberg), pp. 1–17. University of California Press, Berekely, CA.
52 Samadi, S., Quéméré, E., Lorion, J., Tillier, A., von Cosel, R. & Lopez, P. et al. (2007) Molecular phylogeny in mytilids supports the wooden steps to deep‐sea vents hypothesis. Comptes Rendus Biologies, 330, 446–456.
53 Schrödl, M. & Stöger, I. (2014) A review on deep molluscan phylogeny: old markers, integrative approaches, persistent problems. Journal of Natural History, 48, 2773–2804.
54 Scott, P.J.B., Risk, M.J. & Carriquiry, J.D. (1988) El Niño, bioerosion and the survival of east Pacific reefs. In: Proceedings of the 6th International Coral Reef Symposium, Townsville Australia (eds J.H. Choat, D. Barnes, M.A. Borowitzka, J.C. Coll, P.J. Davies, P. Flood, et al.), pp. 517–520. International Coral Reef Symposium, Townsville, QLD.
55 Seed, R., Richardson, C.A. & Smith, K. (2000) Marine mussels, their evolutionary success, ecological significance and use as chronometers of environmental change. In: The Evolutionary Biology of the Bivalvia (eds E.M. Harper, J.D. Taylor & J.A. Crame), pp. 465–478. Geological Society, London.
56 Sharma, P.P., González, V.L., Kawauchi, G.Y., Andrade, S.C.S., Guzmán, A., Collins, T.M. et al. (2012) Phylogenetic analysis of four nuclear protein‐encoding genes largely corroborates the traditional classification of Bivalvia (Mollusca). Molecular Phylogenetics and Evolution, 65, 64–74.
57 Sigwart, J.D. & Sutton, M.D. (2007) Deep molluscan phylogeny: synthesis of palaeontological and neontological data. Proceedings of the Royal Society B, 274, 2413–2419.
58 Sigwart, J.D. & Lindberg, D.R. (2015) Consensus and confusion in molluscan trees: evaluating morphological and molecular phylogenies. Systematic Biology, 64, 384–395.
59 Smith, S.A., Wilson, N.G., Goetz, F.E., Feehery, C., Andrade, S.C.S., Rouse, G.W. et al. (2011) Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature, 480, 364–369.
60 Soot‐Ryen, T. (1955) A report on the family Mytilidae (Pelecypoda). Allan Hancock Pacific Expeditions, 20, 1–175.
61 Stöger, I., Sigwart, J.D., Kano, Y., Knebelsberger, T. & Marshall, B.A. (2013) The continuing debate on deep molluscan phylogeny: evidence for Serialia (Mollusca, Monoplacophora + Polyplacophora). BioMed Research International, 2013, art. 407072.
62 Sun, W. & Gao, L. (2017) Phylogeny and comparative genomic analysis of Pteriomorphia (Mollusca: Bivalvia) based on complete mitochondrial genomes. Marine Biology Research, 13, 255–268.
63 Telford, M.J. & Budd, G.E. (2011) Invertebrate evolution: bringing order to the molluscan chaos. Current Biology, 21, R964–R966.
64 Thubaut, J., Puillandre, N., Faure, B., Cruaud, C. & Samadi, S. (2013) The contrasted evolutionary fates of deep‐sea chemosynthetic mussels (Bivalvia, Bathymodiolinae). Ecology and Evolution, 3, 4748–4766.
65 Tsubaki, R., Kameda, Y. & Kato, M. (2011) Pattern and process of diversification in an ecologically diverse epifaunal bivalve group Pterioidea (Pteriomorphia, Bivalvia). Molecular Phylogenetics and Evolution, 58, 97–104.
66 Van Dover, C.L., German, C.R., Speer, K.G., Parson, L.M. & Vrijenhoek, R.C. (2002) Evolution and biogeography of deep‐sea vent and seep invertebrates. Science, 295, 1253–1257.
67 Vermeij, G.J. (1977) The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology, 3, 245–258.
68 Voight, J.R. (2007) Experimental deep‐sea deployments reveal diverse Northeast Pacific wood‐boring bivalves of Xylophagainae (Myoida: Pholadidae). Journal of Molluscan Studies, 73, 377–391.
69 Warme, J.E. (1975) Borings as trace fossils, and the process of marine erosion. In: The Study of Trace Fossils (ed R.W. Frey), pp. 181–227. Springer, New York.
70 Yuan, Y., Li, Q., Yu, H. & Kong, L. (2012) The complete mitochondrial genomes of six heterodont bivalves (Tellinoidea and Solenoidea): variable gene arrangements and phylogenetic implications. PLOS One, 7, e32353.
71 Yonge, C.M. (1941) The Protobranchiata Mollusca: a functional interpretation of their structure and evolution. Philosophical Transactions of the Royal Society B, 230, 79–147.
72 Yonge, C.M. (1955) Adaptation to rock boring in Botula and Lithophaga (Lamellibranchia, Mytilidae) with a discussion on the evolution of this habit. Quarterly Journal of Microscopical Science, 96, 383–410.
73 Zardus, J.D. (2002) Protobranch bivalves. Advances in Marine Biology, 42, 1–65.
2 Functional Morphology
Introduction
In this chapter, the approach is to use much studied representative species of marine mussels to describe the general morphology and functions of the shell, mantle, foot, gill, alimentary canal, gonad, heart, kidney and nervous tissue. Additional information on their particular roles in feeding, reproduction, circulation, excretion, osmoregulation and contaminant accumulation is presented in Chapters 4, 5, 7 and 8.
Shell
Mussels have two shell valves that are hinged dorsally and connected by an elastic ligament. Adductor muscles hold the valves together, and relaxation of the ligament and contraction of these muscles open and close the shell, respectively. In Mytilus spp., the two shell valves are similar in size, and are