Marine Mussels. Elizabeth Gosling

Marine Mussels - Elizabeth Gosling


Скачать книгу
(2013) concluded that benthic stages of M. edulis tolerate high ambient pCO2 when food supply is abundant and that energy availability needs to be considered to predict species vulnerability to OA.

      Navarro et al. (2013) evaluated the impact of medium‐term (70 days) exposure to elevated pCO2 levels (380, 750 and 1200 ppm) on physiological processes of juvenile M. chilensis. SFG was reduced by 13% at 750 ppm and 28% at 1200 ppm CO2 compared to the control treatment, 380 ppm (see Figure 6.21). This could represent a significant loss in annual production for commercial operations. A reduction in growth to 55% was also reported for juvenile and adult M. edulis maintained under long‐term moderate CO2 levels (Michaelidis et al. 2005). Subsequently, Navarro et al. (2016) examined the combined effect of temperature (12 and 16 °C) and elevated pCO2 levels (380, 750 and 1000 μatm) on juvenile M. chilensis. They found, as in their previous study, that SFG was significantly lower at the highest pCO2 concentration compared with the control, and mussels exposed to 700 μatm did not show a significantly different SFG from the other two treatments. SFG was significantly higher at 16 °C than at 12 °C, which may be because these temperatures are within the thermal tolerance of M. chilensis in southern Chile. When strong pCO2 stress was coupled to food limitation, each significantly decreased shell length growth, and both significantly influenced the magnitude of inner shell surface dissolution in M. edulis (Melzner et al. 2011). In contrast, Range et al. (2012) found that even under extreme levels of CO2‐induced acidification, juvenile M. galloprovincialis can continue to calcify and grow.

      In mussels, elevated pCO2 impacts on larval and broodstock feeding (Diaz et al. 2018), byssal attachment (O’Donnell et al. 2013), sea star and gastropod predation (Kepell et al. 2015; Sadler et al. 2018), anti‐predator defense strategies (Kong et al. 2019), levels of predation vulnerability (Kroeker et al. 2016), cellular signaling pathways involved in the immune response (Bibby et al. 2008), immune parameters of haemocytes (Wu et al. 2018), host–pathogen interactions (Asplund et al. 2014), antimicrobial activity (Hernroth et al. 2016) and expression of genes involved in energy and protein metabolism (Hüning et al. 2013).

      As already mentioned, OA is altering the oceanic carbonate saturation state and threatening the survival of marine calcifying organisms. Production of their calcium carbonate exoskeletons is dependent not only on the environmental seawater carbonate chemistry but also on the ability to produce biominerals through proteins. A detailed description of the production and structure of mussel shells is given in Chapter 2. Fitzer et al. (2014) examined the responses of M. edulis to four pCO2 concentrations (380, 550, 750 and 1000 μatm pCO2) over a six‐month incubation period. These concentrations represent future OA scenarios leading up to the year 2100. Mussels were also exposed to combined increases in CO2 and temperature (ambient + 2 °C) relating to future projected climate change. They were examined for shell structural and crystallographic orientation, growth, calcite and aragonite (crystalline forms of calcium carbonate) thickness and carbonic anhydrase concentration. The aim of the investigation was to determine the presence of any OA ‘tipping’ point or threshold which, once reached, might cause calcifiers to experience difficulties in maintaining control of biomineralisation and producing structurally sound shell growth. In a related study, Fitzer et al. (2015) found that OA resulted in rounder, flatter mussel shells with thinner aragonite layers likely to be more vulnerable to fracture under changing environments and predation. These changes in shape could present a compensatory mechanism to enhance protection against predators and changing environments. Mussels employ transient phases of amorphous calcium carbonate (ACC) in the construction of crystalline shells. Fitzer et al. (2016) investigated the influence of OA on ACC formation in the shells of adult M. edulis. Their results demonstrated that OA induces more ACC formation and less crystallographic control in mussels, suggesting that ACC is used as a repair mechanism to combat shell damage under OA. However, the resultant reduced crystallographic control in mussels raises concerns for shell protective function under predation and changing environments.

      The following is a succinct summary of the current OA scenario:

      Over the next decades, it is likely that ocean acidification will pose serious consequences for many marine and estuarine shelled molluscs. A comparison of the available literature to date suggests that while detrimental effects on adults remain uncertain, the most sensitive life‐history stage seems to be the larvae, with a large majority of studies on this critical stage of development revealing negative effects. Despite these obvious trends, our current understanding of the biological consequences of an acidifying ocean


Скачать книгу