Algebra and Applications 2. Группа авторов

Algebra and Applications 2 - Группа авторов


Скачать книгу
vector fields. J. Sov. Math., 17(1), 1650–1675.

      Andruskiewitsch, N. and Cuadra, J. (2013). On the structure of (co-Frobenius) Hopf algebras. J. Noncommutative Geom., 13(1), 83–104.

      Andruskiewitsch, N. and Schneider, H.-J. (2002). Pointed Hopf algebras. In New Directions in Hopf Algebras, Montgomery, S. and Schneider, H.-J. (eds). MSRI and Cambridge University Press, Cambridge.

      Balinskii, A.A. and Novikov, S.P. (1985). Poisson bracket of hydrodynamic type, Frobenius algebras and Lie algebras. Doklady An. SSSR, 283(5), 1036–1039.

      Brouder, C. (2000). Runge-Kutta methods and renormalization. Eur. Phys. J., C12, 512-534.

      Burde, D. (2006). Left-symmetric algebras or pre-Lie algebras in Geometry and Physics. Central Eur. J. Math. DOI: 10.2478/s11533–006–0014–9.

      Butcher, J.C. (1963). Coefficients for the study of Runge-Kutta integration processes. J. Austral. Math. Soc, 3, 185-201.

      Calaque, D., Ebrahimi-Fard, K., Manchon, D. (2011). Two interacting Hopf algebras of trees: A Hopf-algebraic approach to composition and substitution of B-series. Adv. Appl. Math., 47(2), 282-308.

      Cayley, A. (1857). On the theory of analytical forms called trees. Phil. Mag., 13, 172-176.

      Chapoton, F. (2001). Algèbres pré-Lie et algèbres de Hopf liées à la renormalisation. C. R. Acad. Sci., 332(1), 681–684.

      Chapoton, F. (2002). Rooted trees and an exponential-like series. arXiv:math/0209104.

      Chartier, P., Hairer, E., Vilmart, G. (2005). A substitution law for B-series vector fields. Research report, INRIA, Rocquencourt.

      Chartier, P., Hairer, E., Vilmart, G. (2010). Algebraic structures of B-series. Found. Comput. Math., 10, 407–427.

      Connes, A. and Kreimer, D. (1998). Hopf algebras, renormalization and noncommutative geometry. Comm. Math. Phys., 199, 203–242.

      Curry, C., Ebrahimi-Fard, K., Munthe-Kaas, H.Z. (2019). What is a post-Lie algebra and why is it useful in geometric integration. In Numerical Mathematics and Advanced Applications ENUMATH 2017, Radu, F., Kumar, K., Berre, I., Nordbotten, J.M., Pop, I.S. (eds). Springer, Cham [Online]. Available at: https://doi.org/10.1007/978–3–319–96415–738.

      Curry, C., Ebrahimi-Fard, K., Manchon, D., Munthe-Kaas, H.Z. (2020). Planary branched rough paths and rough differential equations on homogeneous spaces. J. Diff. Eq., 269(11), 9740–9782.

      Dǎscǎlescu, S., Nǎstǎsescu, C., Raianu, S. (2001). Hopf Algebras: An Introduction. Marcel Dekker, New York.

      Dür, A. (1986). Möbius Functions, Incidence Algebras and Power Series Representations. Springer, Berlin, Heidelberg.

      Dzhumadil’daev, A. and Löfwall, C. (2002). Trees, free right-symmetric algebras, free Novikov algebras and identities. Homol. Homotopy Appl., 4(2), 165–190.

      Ebrahimi-Fard, K. and Manchon, D. (2009a). Dendriform equations. J. Algebra, 322, 4053–4079.

      Ebrahimi-Fard, K. and Manchon, D. (2009b). A Magnus- and Fer-type formula in dendriform algebras. Found. Comput. Math., 9(3), 295–316.

      Ebrahimi-Fard, K. and Manchon, D. (2011). Twisted dendriform algebras and the pre-Lie Magnus expansion. J. Pure Appl. Alg., 215(11), 2615–2627.

      Ebrahimi-Fard, K., Manchon, D., Patras, F. (2008). New identities in dendriform algebras. J. Algebra, 320, 708–727.

      Ebrahimi-Fard, K., Lundervold, A., Munthe-Kaas, H.Z. (2015). On the Lie enveloping algebra of a Post-Lie algebra. J. Lie Theory, 25(4), 1139–1165.

      Gerstenhaber, M. (1963). The cohomology structure of an associative ring. Ann. Math., 78, 267–288.

      Guin, D. and Oudom, J.-M. (2005). Sur l’algèbre enveloppante d’une algèbre pré-Lie. C. R. Acad. Sci., 340(1).

      Hentzel, I.R., Jacobs, D.P., Peresi, A. (1996). A basis for free assosymmetric algebras. J. Algebra, 183(2), 306–318.

      Kassel, C. (1995). Quantum Groups. Springer-Verlag, New York.

      Kleinfeld, E. (1957). Assosymmetric rings. Proc. Amer. Math. Soc., 8(5), 983–986.

      Kreimer, D. (2002). The combinatorics of (perturbative) quantum field theories. Phys. Rep., 363, 387–424.

      Livernet, M. (2006). A rigidity theorem for pre-Lie algebras. J. Pure Appl. Alg., 207(1), 1–18.

      Loday, J.-L. (1995). Cup-product for Leibniz cohomology and dual Leibniz algebras. Math. Scand., 77(2), 189–196.

      Loday, J.-L. (1996). La renaissance des opérades. In Séminaire Bourbaki : Volume 1994/95, Exposés 790–804, Société mathématique de France (ed.). Astérisque, France.

      Loday, J.-L. (2001). Dialgebras. In Dialgebras and Related Operads, Loday, J.-L., Frabetti, A., Chapoton, F., Goichot, F. (eds). Springer, Berlin.

      Loday, J.-L. and Ronco, M. (2010). Combinatorial Hopf algebras. Clay Math. Proc., 11.

      Loday, J.-L. and Vallette, B. (2012). Algebraic Operads. Springer, Berlin, Heidelberg.

      Lundervold, A. and Munthe-Kaas, H.Z. (2013). On post-Lie algebras, Lie-Butcher series and moving frames. Found. Comput. Math., 13(4), 583–613.

      Manchon, D. (2008). Hopf algebras and renormalisation. Handbook of Algebra, 5, 365–427.

      Manchon, D. and Saidi, A. (2011). Lois pré-Lie en interaction. Comm. Alg., 39(10), 3662–3680.

      Matsushima, Y. (1968). Affine structures on complex manifolds. Osaka J. Math., 5, 215–222.

      May, J.-P. (1972). The Geometry of Iterated Loop Spaces. Springer-Verlag, Berlin, Heidelberg.

      Montgomery, S. (1993). Hopf Algebras and their Actions on Rings. CBMS Regional Conference Series in Mathematics, Los Angeles, CA.

      Munthe-Kaas, H.Z. and Wright, W. (2008). On the Hopf algebraic structure of Lie group integrators. Found. Comput. Math., 8(2), 227–257.

      Osborn, J.-M. (1992). Novikov algebras. Nova J. Alg., 1, 1–14.

      Schützenberger, M.-P. (1958/1959). Sur une propriété combinatoire des algèbres de Lie libres pouvant être utilisée dans un problème de mathématiques appliquées. Séminaire Dubreil-Jacotin Pisot, Paris.

      Sweedler, M.-E. (1969). Hopf Algebras. Benjamin, New York.

      Vallette, B. (2007). Homology of generalized partition posets. J. Pure Appl. Algebra, 208(2), 699–725.

      Vinberg, E.-B. (1963). The theory of homogeneous convex cones. Transl. Moscow Math. Soc., 12, 340–403.

      1 1. We thank Muriel Livernet for having brought this point to our attention.

      2 2. The two notations → and ↷ come from Calaque et al. (2011), but have been exchanged.

      Конец ознакомительного фрагмента.

      Текст


Скачать книгу