Tropical Marine Ecology. Daniel M. Alongi
Atlantic squirrelfish (family, Holocentridae): exploring pelagic larval distribution and population connectivity. Marine Biology 149: 899–913.
8 Bowen, B.W., Rocha, L.A., Toonen, R.J. et al. (2013). The origins of tropical marine biodiversity. Trends in Ecology and Evolution 28: 359–366.
9 Briggs, J.C. (1974). Marine Zoogeography. New York: McGraw‐Hill.
10 Briggs, J.C. (1999). Coincident biogeographic patterns: Indo‐West Pacific Ocean. Evolution 53: 326–335.
11 Briggs, J.C. (2006). Proximate sources of marine biodiversity. Journal of Biogeography 33: 1–10.
12 Briggs, J.C. and Bowen, B.W. (2013). Marine shelf habitat, biogeography, and evolution. Journal of Biogeography 40: 1023–1035.
13 Brown, J.H. (2014). Why are there so many species in the tropics? Journal of Biogeography 41: 8–28.
14 Clarke, A. and Crame, J.A. (1997). Diversity, latitude and time: patterns in the shallow sea. In: Marine Biodiversity, Patterns and Processes (eds. R.F.G. Ormond, J.D. Gage and M.V. Angel), 122–147. Cambridge, UK: Cambridge University Press.
15 Crame, J.A. (2020). Early Cenozoic evolution of the latitudinal diversity gradient. Earth‐Science Reviews 202: 103090 https://doi.org/10.1016/j.earscirev.2020.103090.
16 Di Martino, E., Jackson, J.B., Taylor, P.D. et al. (2018). Differences in extinction rates drove modern biogeographic patterns of tropical marine biodiversity. Science Advances 4: eaaq1508. https://doi.org/10.1126/sciadv.aaq1508.
17 Duke, N.C. (2017). Mangrove floristics and biogeography revisited: further deductions from biodiversity hot spots, ancestral discontinuities, and common evolutionary processes. In: Mangrove Ecosystems: A Global Biogeographic Perspective (eds. V.H. Rivera‐Monroy, S.Y. Lee, E. Kristensen and R.R. Twilley), 17–53. Cham, Switzerland: Springer International.
18 Eble, J.A., Rocha, L.A., Craig, M.T. et al. (2011). Not all larvae stay close to home: long‐distance dispersal in Indo‐Pacific reef fish, with a focus on the brown surgeonfish (Acanthurus nigrofuscus). Journal of Marine Biology 2011: 1–12.
19 Edgar, G.J., Alexander, T.J., Lefcheck, J.S. et al. (2017). Abundance and local‐scale processes contribute to multi‐phyla gradients in global marine diversity. Science Advances 3: e1700419. https://doi.org/10.1126/sciadv.1700419.
20 Ekman, S. (1953). Zoogeography of the Sea. London: Sidgwick and Jackson.
21 Floeter, S.R., Rocha, L.A., Robertson, D.R. et al. (2008). Atlantic reef fish biogeography and evolution. Journal of Biogeography 35: 22–47.
22 Fransen, C.H.J.M. (2007). The influence of land barriers on the evolution of pontoniine shrimps (Crustacean, Decapoda) living in association with molluscs and solitary ascidians. In: Biogeography: Time and Space, Distributions, Barriers and Islands (ed. W. Remena), 103–116. Dordrecht, The Netherlands: Springer.
23 Gaither, M.R., Toonen, R.J., Robertson, R.R. et al. (2010). Genetic evaluation of marine biogeographic barriers: perspectives from two widespread Indo‐Pacific snappers (Lutjanus kasmina and Lutjanus fulvus). Journal of Biogeography 37: 133–147.
24 de Grave, S. (2001). Biogeography of Indo‐Pacific Pontoniinae shrimps (Crustacea, Decapoda): a PAE analysis. Journal of Biogeography 28: 1239–1253.
25 Green, E.P., Short, F.T., and Frederick, T. (2003). World Atlas of Seagrasses. Oakland: University of California.
26 Hillebrand, H. (2004). Strength, slope and variability of marine latitudinal gradients. Marine Ecology Progress Series 273: 251–267.
27 Hobbs, J.P.A., Frisch, A.J., Allen, G.R. et al. (2009). Marine hybrid hotspot at Indo‐Pacific biogeographic border. Biology Letters 5: 258–261.
28 Hoegh‐Guldberg, O., Hoegh‐Guldberg, H., Veron, J.E.N. et al. (2009). The Coral Triangle and Climate Change: Ecosystems, People and Societies. Sydney: WWF Australia.
29 Hoeksema, B.W. (2007). Delineation of the Indo‐Malayan centre of maximum marine biodiversity, The Coral Triangle. In: Biogeography: Time, and Place, Distributions, Barriers, and Islands (ed. W. Renema), 117–178. Berlin: Springer.
30 Hogarth, P.J. (2015). The Biology of Mangroves and Seagrasses. Oxford, UK: Oxford University Press.
31 Horne, J.B., van Herwerden, L., Choat, H.J. et al. (2008). High population connectivity across the Indo‐Pacific: congruent lack of phylogeographic structure in three reef fish congeners. Molecular Phylogenetics and Evolution 49: 629–638.
32 Ibarbalz, F.M., Henry, N., Brandão, M.C. et al. (2019). Global trends in marine plankton diversity across kingdoms of life. Cell 179: 1084–1097.
33 Jablonski, D., Belanger, C.L., Berke, S.K. et al. (2013). Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proceedings of the National Academy of Sciences 110: 10487–10494.
34 Jablonski, D., Huang, S., Roy, K. et al. (2017). Shaping the latitudinal diversity gradient: new perspectives from a synthesis of paleobiology and biogeography. The American Naturalist 189: 1–12.
35 Langer, M.R. and Hottinger, L. (2000). Biogeography of selected ‘larger’ foraminifera. Micropaleontology 46: 105–126.
36 Larkum, A.W.D., Waycott, M., and Conran, J.G. (2018). Evolution and biogeography of seagrasses. In: Seagrasses of Australia (eds. A.W.D. Larkum, G.A. Kendrick and P.J. Ralph), 3–29. Cham, Switzerland: Springer International.
37 Lomolino, M.V., Riddle, B.R., and Whittaker, R.J. (2016). Biogeography, 5e. Sunderland, USA: Sinauer.
38 Longhurst, A.L. (2007). Ecological Geography of the Sea, 2e. London: Academic Press.
39 Lourie, S.A., Green, D.M., and Vincent, A.C.J. (2005). Dispersal, habitat preferences and comparative phylogeography of southeast Asian seahorses (Syngnathidae, Hippocampus). Molecular Ecology 14: 1073–1094.
40 Luiz, O.J., Madin, J.S., Robertson, D.R. et al. (2012). Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fish. Proceedings of the Royal Society B: Biological Sciences 279: 1033–1040.
41 Mcleod, E., Hinkel, J., Vafeidis, A.T. et al. (2010). Sea‐level rise vulnerability in the countries of the Coral Triangle. Sustainability Science 5: 207–222.
42 McManus, L.C., Vasconcelos, V.V., Levin, S.A. et al. (2020). Extreme temperature events will drive coral decline in the Coral Triangle. Global Change Biology 26: 2120–2133.
43 Miloslavich, P., Diaz, J.M., Klein, E. et al. (2010). Marine biodiversity in the Caribbean: regional estimates and distributional patterns. PLoS One 5: e11916.
44 Moss, J.A., Henriksson, N.L., Pakulski, J.D. et al. (2020). Oceanic microplankton do not adhere to the latitudinal diversity gradient. Microbial Ecology 79: 511–515.
45 Mundy, B.C., Wass, R., Demartini, E. et al. (2010). Inshore fish of Howland Island, Baker Island, Jarvis Island, Palmyra Atoll, and Kingman Reef. Atoll Research Bulletin 585: 1–133.
46 Norris, R.D. (2000). Pelagic species diversity, biogeography, and evolution. Paleobiology 26: 236–258.
47 Peñaflor, E.L., Skirving, W.J., Strong, A.E. et al. (2009). Sea‐surface temperatures and thermal stress in the Coral Triangle over the past two decades. Coral Reefs 28: 841–850.
48 Pontarp, M., Bunnefeld, L., Cabral, J.S. et al. (2018). The latitudinal diversity gradient: novel understanding through mechanistic eco‐evolutionary models. Trends in Ecology and Evolution 34: 211–223.
49 Reese, J.S., Bowen, B.W., Smith, D.G. et al. (2010). Molecular phylogenetics of moray eels (Muraenidae) demonstrates multiple origins of shell‐crushing jaw (Gymnomuraena, Echidna) and multiple colonizations of the Atlantic Ocean. Molecular Phylogenetics and Evolution 57: 829–835.
50 Reid, D.G., Lal,