Живой мозг. Удивительные факты о нейропластичности и возможностях мозга. Дэвид Иглмен

Живой мозг. Удивительные факты о нейропластичности и возможностях мозга - Дэвид Иглмен


Скачать книгу
в рамках проекта «Геном человека» ученые насчитали порядка 24 тысяч генов; позже их число значительно снизилось – до 19 тысяч. См. Ezkurdia I et al. (2014). Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes, Hum Mol Genet 23 (22): 5866–5878.

      26

      В последующих главах мы рассмотрим данную тему более глубоко и подробно. Хотя зависимость и независимость от опыта представляются противоположностями, между ними не всегда можно провести четкую грань. См. Cline H (2003). Sperry and Hebboil and vinegar? Trends Neurosci 26 [12]: 655–661). В одних случаях жестко запрограммированные механизмы воспроизводят опыт взаимодействия с миром, тогда как в других случаях подобный опыт ведет к экспрессии генов, что, в свою очередь, приводит к образованию новых жестких схем. Рассмотрим, как выглядит картина явной опытозависимой активности: первичная зрительная кора содержит перемежающиеся полосы ткани, которые несут визуальную информацию от правого и от левого глаза (подробнее об этом поговорим ниже). Аксоны, передающие информацию от каждого глаза, изначально широко ветвятся в коре, а потом разделяются, направляясь в два участка, отдельные для правого и левого глаза. Откуда они знают, как им разойтись? Дело в том, что разделение возникает в силу паттернов сопряженной активности: у нейронов левого глаза обычно наблюдается больше взаимной сопряженности, чем у нейронов правого.

      В середине 1960-х годов нейробиологи из Гарвардского университета Дэвид Хьюбел и Торстен Визель показали, что под действием опыта карта равномерного чередования полос способна меняться: если животному закрыть один глаз, территория, занимаемая нервными волокнами открытого глаза, будет расширяться, и это демонстрирует, что в условиях синаптической конкуренции, которая формирует эти карты, необходима нейронная активность. См. Hubel DH, Wiesel TN (1965). Binocular interaction in striate cortex of kittens reared with artificial squint, J Neurophysiol 28: 1041–1059).

      Однако во всем этом определенно крылась загадка, поскольку, как ранее наблюдали Хьюбел и Визель, формирование чередующихся территорий для левого и правого глаза не зависит от активности: подобные паттерны развивались даже у выросших в полной темноте животных. См. Horton JC, Hocking DR [1996]. An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience, J Neurosci. 16 [5]: 1791–1807. Как же согласуются эти два результата, когда они явно противоречат один другому?

      Понадобились годы, чтобы разгадать этот парадокс. Как обнаружилось, пока животное развивается в материнской утробе, в сетчатке его глаз возникают волны спонтанной активности. Эти волны в общих чертах имитируют зрение. Они грубые – не позволяют различать границы и детали, однако их достаточно для сопряжения активности соседних волокон, тянущихся от каждого глаза, что вызывает разделение на два отдельных глаза в следующих областях мозга (таких как, например, латеральное коленчатое тело таламуса, а также кора головного мозга). Иными словами, на раннем этапе развития мозг сам генерирует активность, чтобы поддержать расхождение аксонов левого и правого глаза; позже в действие вступят зрительные потоки от внешнего мира. См. Meister M et al. (1991). Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina, Science 252 (5008): 939–943. Таким образом, граница между приобретаемым опытом и генетически заложенной нейронной активностью довольно-таки размыта. Взаимодействие между опытом и экспрессией генов бывает довольно сложным. Общий принцип в том, что независимые от опыта молекулярные механизмы выстраивают первоначально неточные схемы структур мозга. Позже активность взаимодействия с миром обеспечивает тонкую


Скачать книгу