Light Weight Materials. Группа авторов

Light Weight Materials - Группа авторов


Скачать книгу
USA.

      John, A.A., Jaganathan, S.K., Supriyanto, E., and Manikandan, A. (2016). Surface modification of titanium and its alloys for the enhancement of osseointegration in orthopaedics. Current Science, 111(6), 1003–1015.

      Mandil, G., Paris, H., and Suard, M. (2016). Building new entities from existing titanium part by electron beam melting: Microstructures and mechanical properties. The International Journal of Advanced Manufacturing Technology, 85(5–8), 1835–1846.

      Marrey, M., Malekipour, E., El-Mounayri, H., and Faierson, E.J. (2019). A framework for optimizing process parameters in powder bed fusion (PBF) process using artificial neural network (ANN). 47th SME North American Manufacturing Research Conference, NAMRC 47, Pennsylvania, USA.

      Martina, F., Ding, J., Williams, S., Caballero, A., Pardal, G., and Quintino, L. (2019). Tandem metal inert gas process for high productivity wire arc additive manufacturing in stainless steel. Additive Manufacturing, 25, 545–550.

      Mohamed, O.A. (2017). Analytical modeling and experimental investigation of product quality and mechanical properties in FDM additive manufacturing. PhD dissertation, Swinburne University of Technology.

      Mumtaz, K.A., Erasenthiran, P., and Hopkinson, N. (2008). High density selective laser melting of Waspaloy®. Journal of Materials Processing Technology, 195(1–3), 77–87.

      Nagesha, B.K., Dhinakaran, V., Varsha Shree, M., Manoj Kumar, K.P., Chalawadi, D., and Sathish, T. (2019). Review on characterization and impacts of the lattice structure in additive manufacturing. Materials Today: Proceedings, 21, 916–919.

      Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.Q., and Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172–196.

      Peyre, P., Aubry, P., Fabbro, R., Neveu, R., and Longuet, A. (2008). Analytical and numerical modelling of the direct metal deposition laser process. Journal of Physics D: Applied Physics, 41(2), 025403.

      Rizzuti, S., De Napoli, L., and Ventra, S. (2019). The influence of build orientation on the flatness error in artifact produced by direct metal laser sintering (DMLS) process. In Advances on Mechanics, Design Engineering and Manufacturing II, Cavas Martínez, F., Eynard, B., Fernández Cañavate, F.J., Fernández-Pacheco, D.G., Morer Camo, P., Nigrelli, V. (eds). Springer, Cham.

      Scheck, C.E., Wolk, J.N., Frazier, W.E., Mahoney, B.T., Morris, K., Kestler, R., and Bagchi, A. (2016). Naval additive manufacturing: Improving rapid response to the warfighter. Naval Engineers Journal, 128(1), 71–75.

      Tofail, S.A.M., Koumoulos, E.P., Bandyopadhyay, A., Bose, S., O’Donoghue, L., and Charitidis, C. (2018). Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Materials Today, 21(1), 22–37.

      Varsha Shree, M., Dhinakaran, V., Rajkumar, V., Bupathi Ram, P.M., Vijayakumar, M.D., and Sathish, T. (2019). Effect of 3D printing on supply chain management. Materials Today: Proceedings, 21, 958–963.

      Wei, H.L., Knapp, G.L., Mukherjee, T., and DebRoy, T. (2019) Three-dimensional grain growth during multi-layer printing of a nickel-based alloy Inconel 718. Additive Manufacturing, 25, 448–459.

      Zhao, X., Li, S., Zhang, M., Liu, Y., Sercombe, T.B., Wang, S., Hao, Y., Yang, R., and Murr, L.E. (2016). Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting. Materials & Design, 95, 21–31.

      Additive manufacturing (AM): it can be described as a “freedom fabrication”, as it can construct any complex geometry with diverse materials by adding elements in a layer-by-layer fashion.

      Direct metal deposition: this method is not based on other types of powder bed, but uses a feed nozzle to extrude the powder into the laser beam.

      Direct metal laser sintering (DMLS): this technique is similar to selective laser melting (SLM), but has greater efficiency than the SLM technique.

      Electron beam melting (EBM): in this method, a beam of electron is used to heat the raw material under vacuum and fused together.

      Hybrid manufacturing: this term describes the process of combining additive manufacturing addition of materials in layers frame a component.

      Laser metal fusion (LMF): in this method, a 3D part is formed by selectively melting the powder from the power bed and fusing it in layers with their support structures.

      Selective laser melting (SLM): in this method, metallic powders are fused together using high density lasers.

      1 Chapter written by Veeman DHINAKARAN, Mahesh VARSHA SHREE, Thimmaiah JAGADEESHA and Madabushi SWAPNA SAI.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7SHmUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAACUcAgAAAgAA HAJQAAxTYW1pIE1lbmFzY2UcAgUACExheW91dCAxADhCSU0EJQAAAAAAELX3qB9z4ksiHblsoQqR Gig4QklNBDoAAAAAAOUAAAAQAAAAAQAAAAAAC3ByaW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEA AAAASW50ZWVudW0AAAAASW50ZQAAAABDbHJtAAAAD3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3By aW50ZXJOYW1lVEVYVAAAAAEAAAAAAA9wcmludFByb29mU2V0dXBPYmpjAAAADABQAHIAbwBvAGYA IABTAGUAdAB1AHAAAAAAAApwcm9vZlNldHVwAAAAAQAAAABCbHRuZW51bQAAAAxidWlsdGluUHJv b2YAAAAJcHJvb2ZDTVlLADhCSU0EOwAAAAACLQAAABAAAAABAAAAAAAScHJpbnRPdXRwdXRPcHRp b25zAAAAFwAAAABDcHRuYm9vbAAAAAAAQ2xicmJvb2wAAAAAAFJnc01ib29sAAAAAABDcm5DYm9v bAAAAAAAQ250Q2Jvb2wAAAAAAExibHNib29sAAAAAABOZ3R2Ym9vbAAAAAAARW1sRGJvb2wAAAAA AEludHJib29sAAAAAABCY2tnT2JqYwA

Скачать книгу