Distributed Acoustic Sensing in Geophysics. Группа авторов
the white line is shown in the bottom panel.
Figure 1.35 Comparison of geophones (left panel) and DAS with engineered fiber (right panel).
The results from a VSP survey in a carbon sequestration well (Correa et al., 2017) demonstrate that DAS with engineered fiber has the potential to provide similar, or even superior, quality data sets as compared to conventional geophones. An important aspect is that, due to the higher spatial sampling, DAS data has the capability to provide more detailed velocity information as compared to geophones. This conclusion was expected from the preceding theory and is illustrated in Figure 1.35, which demonstrates even a finer reflection structure from DAS than from geophones.
In summary, we have estimated the main DAS performance parameters for standard and engineered fiber and provided field data that correspond to the theoretical predictions of improved sensitivity and dynamic range.
ACKNOWLEDGMENTS
The authors would like to thank Roman Pevzner and Valeriya Shulakova (of CO2CRC, Curtin University) and Thomas M. Daley, Barry M. Freifeld, Jonathan Ajo‐Franklin, and Shan Dou (of the Lawrence Berkeley National Laboratory) for the use of raw and processed surface seismic data and the presented field geometry. The authors would also like to acknowledge the significant help and support from their colleagues at Silixa. In addition, the authors thank the reviewers for their helpful comments in preparing this manuscript.
REFERENCES
1 Abbott, R. E., Mellors, R. E., & Pitarka, A. E. (2019). Distributed acoustic sensing observations and modeling of the DAG series of chemical explosions. Paper presented in CTBT Science & Technology 2019 Conference, T2.3‐P12. https://ctnw.ctbto.org/ctnw/abstract/32643
2 Baird, A. (2020). Modelling the response of helically wound DAS cables to microseismic arrivals. Paper presented in First EAGE Workshop on Fibre Optic Sensing (Vol. 2020, No. 1, pp. 1–5). European Association of Geoscientists & Engineers.
3 Benioff, H. (1935). A linear strain Seismograph. Bulletin of the Seismological Society of America, 25(4), 283–309.
4 Brennan, D. G. (1959). Linear diversity combining techniques. Proceedings of the IRE, 47(6), 1075–1102. doi: 10.1109/JRPROC.1959.287136
5 Carroll, J., & Huber, D. (1986). A fiber‐optic hydrophone with a mechanical anti‐aliasing filter. Journal of Lightwave Technology, 4(1), 83–86.
6 Correa, J., Egorov, A., Tertyshnikov, K., Bona, A., Pevzner, R., Dean, T., et al. (2017). Analysis of signal to noise and directivity characteristics of DAS VSP at near and far offsets—A CO2CRC Otway Project data example. The Leading Edge, 36(12), 994a1–994a7. doi: 10.1190/tle36120994a1.1
7 Crickmore, R. I., & Hill, D. J. (2010). U.S. Patent No. 7,652,245. Washington, DC: U.S. Patent and Trademark Office.
8 Crickmore, R., & Ku, E. (2017). U.S. Patent Application No. 15/309,076.
9 Dakin, J. P. (1990). Distributed fibre optic sensor system. UK Patent, GB2222247A.
10 Dakin, J., & Culshaw, B. (Eds.). (1989). Optical fiber sensors: Systems and applications (Vol. 2, Chap. 15). Artech House Optoelectronics. Norwood, Massachusetts.
11 De Rosa, M., Carberry, J., Bhagavatula, V., Wagner, K., & Saravanos, C. (2002). High‐power performance of single‐mode fiber‐optic connectors. Journal of Lightwave Technology, 20(5), 851.
12 Ellis, R. (2007). Explanation of reflection features in optical fiber as sometimes observed in OTDR measurement traces. Corning White Paper.
13 Farhadiroushan, M., Finfer, D., Strusevich, D., Shatalin, S., & Parker, T. (2021). Non‐isotropic acoustic cable. U.S. Patent Application No. 15/804,657.
14 Farhadiroushan, M., Parker, T. R., & Shatalin, S. (2010). Method and apparatus for optical sensing. WO2010136810A2.
15 Farhadiroushan, M., Parker, T., & Shatalin, S. (2021). U.S. Patent No. 10,883,861. Washington, DC: U.S. Patent and Trademark Office.
16 Finfer, D. C., Mahue, V., Shatalin, S., Parker, T., & Farhadiroushan, M. (2014, October). Borehole flow monitoring using a non‐intrusive passive distributed acoustic sensing (DAS). Paper presented in SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. doi: 10.2118/170844‐MS
17 Fougerat, A., Guérineau, L., & Tellier, N. (2018). High‐quality signal recording down to 0.001 Hz with standard MEMS accelerometers. Paper presented in SEG Technical Program Expanded Abstracts 2018 (pp. 196–200). Society of Exploration Geophysicists.
18 Garnier, A., & Chanin, M. L. (1992). Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere. Applied Physics B, 55(1), 35–40.
19 Ghiglia, D. C., & Pritt, M. D. (1998). Two‐dimensional phase unwrapping. Theory, algorithms, and software. New York, USA: A Wiley‐Interscience Publication.
20 Goodman, J. W. (2005). Introduction to Fourier optics (Chap. 2, 6). Roberts and Company Publishers. Englewood, Colorado.
21 Handerek, V. (2016). U.S. Patent No. 9,304,017. Washington, DC: U.S. Patent and Trademark Office.
22 Hartog, A. H. (2017). An introduction to distributed optical fibre sensors. CRC press. Boca Raton, Florida.
23 Hartog, A. H., Kotov, O. I., & Liokumovich, L. B. (2013, July). The optics of distributed vibration sensing. Paper presented in Second EAGE Workshop on Permanent Reservoir Monitoring 2013–Current and Future Trends. doi: 10.3997/2214‐4609.20131301
24 Hartog, A., & Kader, K. (2012). U.S. Patent Application No. 13/221,280.
25 Hornman, K., Kuvshinov, B., Zwartjes, P., & Franzen, A. (2013, June). Field trial of a broadside‐sensitive distributed acoustic sensing cable for surface seismic. Paper presented in 75th EAGE Conference & Exhibition incorporating SPE EUROPEC 2013. doi: 10.3997/2214‐4609.20130383
26 Itoh, K. (1982). Analysis of the phase unwrapping algorithm. Applied Optics, 21(14), 2470–2470. doi: 10.1364/AO.21.002470
27 Jousset, P., Reinsch, T., Ryberg, T., Blanck, H., Clarke, A., Aghayev, R., et al. (2018). Dynamic strain determination using fibre‐optic cables allows imaging of seismological and structural features. Nature Communications, 9(1), 2509. doi: 10.1038/s41467‐018‐04860‐y
28 Juarez, J. C., Maier, E. W., Choi, K. N., & Taylor, H. F. (2005). Distributed fiber‐optic intrusion sensor system. Journal of Lightwave Technology, 23(6), 2081–2087. doi: 10.1109/JLT.2005.849924
29 Juškaitis, R., Mamedov, A. M., Potapov, V. T., & Shatalin, S. V. (1992). Distributed interferometric fiber sensor system. Optics Letters, 17(22), 1623–1625. doi: 10.1364/OL.17.001623
30 Kazovsky, L. G. (1989). Phase‐and polarization‐diversity coherent optical techniques. Journal of Lightwave Technology, 7(2), 279–292. doi: 10.1109/50.17768
31 Kirkendall, C. K., & Dandridge, A. (2004). Overview of high performance fibre‐optic sensing. Journal of Physics D: Applied Physics, 37(18), R197. doi: 10.1088/0022‐3727/37/18/R01
32 Kreger, S. T., Gifford, D. K., Froggatt, M. E., Soller, B. J., & Wolfe, M. S. (2006, October). High resolution distributed strain or temperature measurements in single‐and multi‐mode fiber using swept‐wavelength interferometry. In Optical Fiber Sensors (p. ThE42). Optical Society of America. doi: 10.1364/OFS.2006.ThE42
33 Lewis, M. F. (1985). On Rayleigh waves and related propagating acoustic waves. In Rayleigh‐wave theory and application (pp. 37–58). Springer, Berlin, Heidelberg.
34 Martin,