Макрокинетика сушки. Герман Иванович Ефремов

Макрокинетика сушки - Герман Иванович Ефремов


Скачать книгу
часто являются совмещенными. Так при сушке удаление влаги (массообмен) происходит обычно при нагревании материала и, следовательно, процесс тепломассооменный (перенос тепла и массы).

      1.1 Закон сохранения массы

      Одним из главных законов при переносе массы является закон сохранения массы. Этот закон установлен М. В. Ломоносовым. Для элементарного объема он может быть получен следующим образом.

      Рис. 1.1 К выводу закона сохранения массы.

      Рассмотрим поток вещества через грани элементарного объема. Плотность ρ и скорость потока u в общем случае изменяются в пространстве и во времени:

      Рассмотрим изменение массы вдоль оси х (Рис. 1.1). Если проекция скорости потока на входе в элементарный объем ux, то на выходе из него, с учетом изменения на длине dx она составит:

      .

      Тогда изменение массы вдоль оси х за счет изменения скорости составит:

      .

      Аналогично определяется изменение массы вдоль остальных осей. Суммарное изменение массы, отнесенное к единице объема, вдоль всех координат должно быть равно нулю:

      Выражение в скобках в уравнении (1.2) называется дивергенцией вектора скорости и обозначается div u. С учетом его получим для (1.2):

      Это выражение закона сохранения массы и оно известно в гидродинамике, как уравнение сплошности, неразрывности потока. В элементарной форме это уравнение для одномерного потока, движущегося со средней скоростью v примет вид:

      где М – массовый расход потока, S – площадь его поперечного сечения.

      Для несжимаемых жидкостей (ρ = Const) уравнение (1.3) упрощается:

      Для описания химического процесса в уравнении (1.2) вместо плотности подставляют массовую концентрацию компонента С. С учетом скорости образования этого компонента по химической реакции r, если она имеет место, для уравнения (1.2) получим:

      С учетом, что концентрация компонента изменяется в пространстве и во времени, получим:

      В частном случае для стационарных процессов первый член в левой части уравнения (1.6) равен нулю, а в случае отсутствия химической реакции правый член этого уравнения также равен нулю.

      1.2 Закон сохранения количества движения

      В движущемся потоке газа или жидкости действуют массовые и поверхностные силы. Они оказывают влияние на взаимодействие, соударения молекул, что обуславливает перенос количества движения. По второму закону Ньютона изменение количества движения в единицу времени (импульс) численно равно силе:

      Поэтому баланс сил в движущемся потоке представляет собой закон сохранения количества движения (импульса).

      Рис. 1.2 К выводу закона сохранения количества движения.

      Рассмотрим


Скачать книгу