Идиот или гений? Как работает и на что способен искусственный интеллект. Мелани Митчелл
примеров расширенный перцептрон сможет узнать все необходимые веса и пороговые значения, используя алгоритм обучения.
Розенблатт и другие исследователи показали, что сети перцептронов можно научить выполнять относительно простые задачи на восприятие, а еще Розенблатт математически доказал, что теоретически достаточно обученные перцептроны могут безошибочно выполнять задачи определенного, хотя и строго ограниченного класса. При этом было непонятно, насколько хорошо перцептроны справляются с более общими задачами ИИ. Казалось, эта неопределенность не мешала Розенблатту и его спонсорам из Научно-исследовательского управления ВМС США делать до смешного оптимистичные прогнозы о будущем алгоритма. Освещая пресс-конференцию Розенблатта, состоявшуюся в июле 1958 года, газета The New York Times написала:
Сегодня ВМС продемонстрировали зародыш электронного компьютера, который, как ожидается, сможет ходить, говорить, видеть, писать, воспроизводить себя и сознавать свое существование. Было сказано, что в будущем перцептроны смогут узнавать людей, называть их по именам и мгновенно переводить устную речь и тексты с одного языка на другой[31].
Да, даже в самом начале ИИ страдал от шумихи. Вскоре я расскажу о печальных последствиях такого ажиотажа. Но пока позвольте мне на примере перцептронов объяснить основные различия между символическим и субсимволическим подходом к ИИ.
Поскольку “знания” перцептрона состоят из набора чисел, а именно – определенных в ходе обучения весов и порогового значения, – сложно выявить правила, которые перцептрон использует при выполнении задачи распознавания. Правила перцептрона не символические: в отличие от символов Универсального решателя задач, таких как ЛЕВЫЙ-БЕРЕГ, #МИССИОНЕРОВ и ПЕРЕМЕСТИТЬ, веса и порог перцептрона не соответствуют конкретным понятиям. Довольно сложно преобразовать эти числа в понятные людям правила. Ситуация существенно усложняется в современных нейронных сетях с миллионами весов.
Можно провести грубую аналогию между перцептронами и человеческим мозгом. Если бы я могла заглянуть к вам в голову и понаблюдать за тем, как некоторое подмножество ста миллиардов ваших нейронов испускает импульсы, скорее всего, я бы не поняла, ни о чем вы думаете, ни какие “правила” применяете при принятии конкретного решения. Тем не менее человеческий мозг породил язык, который позволяет вам использовать символы (слова и фразы), чтобы сообщать мне – часто недостаточно четко, – о чем вы думаете и почему приходите к определенным выводам. В этом смысле наши нервные импульсы можно считать субсимволическими, поскольку они лежат в основе символов, которые каким-то образом создает наш мозг. Перцептроны, а также более сложные сети искусственных нейронов, называются “субсимволическими” по аналогии с мозгом. Их поборники считают, что для создания искусственного интеллекта языкоподобные символы и правила их обработки должны
31
Цит. по: M. Olazaran, “A Sociological Study of the Official History of the Perceptrons Controversy”,