Data Mining and Machine Learning Applications. Группа авторов

Data Mining and Machine Learning Applications - Группа авторов


Скачать книгу

      Features of KNIME: KNIME [25] is an open-source analytical platform for data science. It helps to understand and design data science workflows, understanding time-series data analysis, to build machine learning models, and understand the data using visualization tools (charts, plots, etc.). It also helps to export the reports generated. KNIME workbench consists of KNIME explorer, Workflow bench, Node Repository, Workflow Editor, Description, Outline, and Console. It supports the data wrangling technique where one can collect and process the data from any source. It comes in two flavors:

       ◦ KNIME analytical platform

       ◦ KNIME server.

       Both these platforms are available in Microsoft Azure and Amazon AWS

       KNIME TOOL Installation

A snapshot of the installation of KNIME. A snapshot of the setting path for installing KNIME. A snapshot of the starting installation of KNIME. A snapshot of the selecting directory as a workspace. A snapshot of the starting of KNIME.

      Figure 1.10 Starting KNIME.

A snapshot of the completing setup of wizard.

      Figure 1.11 Completing setup wizard.

      Figure 1.12 Installing Workspace in KNIME.

A snapshot of installing KNIME (2).

      Figure 1.13 Installing KNIME (2).

A snapshot of the specifying memory for KNIME.

      Figure 1.14 Specifying memory for KNIME.

      Figure 1.15 Finalizing the installation of KNIME.

A snapshot of the initial screen of KNIME.

      1.7.3 Rapid Miner

      1. Silberschatz, A., Korth, H.F., Sudarshan, S., Database system concepts, Mcgraw-hill, New York, 1997.

      2. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., From data mining to knowledge discovery in databases. AI Mag., 17, 3, 37–37, 1996.

      3. Tan, P.-N., Steinbach, M., Kumar, V., Introduction to data mining, Pearson Education India, New Delhi, 2016.

      4. Sumathi, S. and Sivanandam, S.N., Introduction to data mining and its applications, vol. 29, Springer, Berlin Heidelberg, 2006.

      5. Mehrotra, S., Rastogi, R., Korth, H.F., Silberschatz, A., A transaction model for multidatabase systems, in: ICDCS, pp. 56–63. Mining, What Is Data. “Data mining: Concepts and techniques, vol. 10, pp. 559–569, Morgan Kaufmann, 2006.

      6. Pyo, S., Uysal, M., Chang, H., Knowledge discovery in the database for tourist destinations. J. Travel Res., California, USA, 40, 4, 374–384, 2002.

      7. Gehrke, J., Ginsparg, P., Kleinberg, J., Overview of the 2003 KDD Cup. ACM Sigkdd


Скачать книгу