Engineering Physics of High-Temperature Materials. Nirmal K. Sinha

Engineering Physics of High-Temperature Materials - Nirmal K. Sinha


Скачать книгу
Collings, E.W. (1994). Materials Properties Handbook: Titanium Alloys. Metals Park, Ohio, USA: American Society for Metals (ASM) International, The Materials Information Society (See section Ti‐6Al‐2Sn‐4Zr‐6Mo, pp. 465‐481).

      12 Brini, E., Fennell, C.J., Fernandez‐Serra, M. et al. (2017). How water's properties are encoded in its molecular structure and energies. Chem. Rev. 117: 12385–12414. https://doi.org/10.1021/acs.chemrev.7b00259.

      13 British Standard Institution (1975). Glossary of Rheological Terms, BS 5168. BSI Standards.

      14 Bushwick, Sophia (2013). What Stresses Gorilla Glass Makes It Stronger, Inside Science, Retrieved June 28, 2020 https://www.insidescience.org/news/what‐stresses‐gorilla‐glass‐makes‐it‐stronger

      15 Caesar, A.G. (2019). Iron carbon phase diagram.svg Wikipedia Commons. Accessed July 27, 2020 from https://commons.wikimedia.org/wiki/File:Iron_carbon_phase_diagram.svg. (Licensed under the Creative Commons Attribution‐Share Alike 4.0 International https://creativecommons.org/licenses/by‐sa/4.0/legalcode).

      16 Carter, G.F. and Paul, D.E. (1991). Materials Science and Engineering. OH, USA: ASM International.

      17 Chaplin, M. (n.d.). Water Structure and Science: Water Phase Diagram, Retrieved July 6, 2020 www1.lsbu.ac.uk/water/water_phase_diagram.html.

      18 Corning (n.d.). A Look Behind Gorilla Glass: What is it and how is it made? Corning | Gorilla Glass Retrieved June 28, 2020 https://www.corning.com/gorillaglass/worldwide/en/a‐look‐behind‐corning‐gorilla‐glass.html.

      19 Davidovits J. (2005). Geopolymer, Green Chemistry and Sustainable Development Solutions. Proceedings of the World Congress Geopolymer 2005, Geopolymer Institute, pp. 222–223.

      20 DeVoe, H. (n.d.). Thermodynamics and Chemistry, LibreTexts Libraries. Retrieved March 05, 202 https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoe's_%22Thermodynamics_and_Chemistry%22

      21 Dieter, G.E. (1961). Mechanical Metallurgy. New York: McGraw‐Hill Book Company, Inc.

      22 Duhl, D.N. (1987). Directionally solidified superalloys. In: Superalloys II, Chapt. 7 (eds. C.T. Sims, N.S. Stoloff and W.C. Hagel), 189–214. New York: John Wiley & Sons, Inc.

      23 Dutt, A.K., Gwalani, B., and Tungala, V. (2019). A novel nano‐particle strengthened titanium alloy with exceptional specific strength. Sci. Rep. 9: 11726. https://doi.org/10.1038/s41598‐019‐48139‐8.

      24 Elenius, M. and Dzugutov, M. (2009). Evidence for a liquid‐solid critical point in a simple monatomic system. J. Chem. Phys. 131: 104502.

      25 Erickson, G.L. (1996). The development and application of CMSX‐10. In: Superalloys (eds. R.D. Kissinger, D.J. Deye, D.L. Anton, et al.), 35–44. Warrendate, USA: The Minerals, Metals and Materials Society.

      26 Evstropyev, K.S. (1953). The crystalline theory of glass structure. Proceedings of the structure of glass, pp. 9–15 in 1958 Translation *(pp 9–18 in original Russian). Leningrad, Nov. 23–27, 1953, Academy of Sciences USSR Press, (Translated from Russian by Consultants Bureau, INC, New York, 1958).

      27 Eylon, D., Fujishiro, S., and Postans, P.J. (1984). High‐temperature titanium alloys—A review. JOM 36: 55. https://doi.org/10.1007/BF03338617.

      28 Ferguson, C. (2008). Historical introduction to the development of materials science and engineering as a teaching discipline, The Higher Education Academy, UK Centre for Materials Education, Liverpool

      29 Flory, P.J. (1949). The configuration of real polymer chains. J. Chem. Phys. 17 (3): 303–310.

      30 Giamei, A.F. and Anton, D.L. (1985). Rhenium additions to a ni‐base superalloy: effects on microstructure. Metall. Trans., V. 16A: 1997–2005.

      31 Gibbs, W.J. (1874–1878). On the Equilibrium of Heterogeneous Substances, vol. 3. New Haven: Transactions of the Connecticut Academy of Arts and Sciences.

      32 Gogia, A.K. (2005). High‐temperature titanium alloys. Def. Sci. J. 55 (2): 143–173.

      33 Greaves, G.N. and Sen, S. (2007). Inorganic glasses, glass‐forming liquids and amorphous solids. Adv. Phys. 56 (1): 1–166.

      34 Griffith, A.A. (1921). The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond., Series A: Containing papers of a Mathematical or Physical Character 221: 163–198.

      35 Hsich, H.S.‐Y. (1980). Physical and thermodynamic aspects of the glassy state and intrinsic non‐linear behaviour of creep and stress relaxation. J. Mater. Sci. 15: 1194–1206.

      36 Ikawa, H., Shin, S., and Nakao, Y. (1974). Study on Hot Cracks in Cast Ni‐Base Superalloy, B‐1900. Trans. Jpn. Weld. Soc. 5: 57.

      37 International Glaciological Society (2009). Cover photo of ice. News bulletin of the International Glaciological Society 149 (1) ISSN 0019–1043.

      38 Jafary‐Zadeh, M., Praveen, G.K., Branicio, P.S. et al. (2018). A critical review on metallic glasses as structural materials for cardiovascular stent applications. J. Funct. Biomater. 9 (1): 19. https://doi.org/10.3390/jfb9010019.

      39 Jones, D.A. and Westerman, R.E. (1965). Oxidation of a Ni‐2 percent ThO2 alloy and the logarithmic rate law of oxidation. Corrosion 21: 295.

      40 Kelly, T.J. (1990). In (Eds.) R.A. Patterson and K.W. Mahin. Proceedings of Symposium on Weldability of Materials, Detroit, MI, USA, ASM International, p. 151.

      41 Khan, M.M., Nemati, A., Rahman, Z.U. et al. (2017). Recent advancements in bulk metallic glasses and their applications: a review. Crit. Rev. Solid State Mater. Sci.: 1–36. https://doi.org/10.1080/10408436.2017.1358149.

      42 Landau, L.D. and Lifshitz, E.M. (1980). Statistical Physics, 3e, vol. 5. Oxford: Butterworth‐Heinemann, Pergamon.

      43 Lebedev, A.A. (1912). Polymorphism and tempering of glass. Trans. Optical Inst. 2: 1–18, Leningrad.

      44 Lebedev, A.A. (1926). Annealing optical glass, Rev. Optique, 5, pp. 1–30, Cerami. Abs., 6(1), 11 (1927).

      45 Lebedev, A.A. (1940). The structure of glasses according to X‐ray data and their optical properties. Bull. Acad. Sci. 4 (4): 584.

      46 Lutgens, F.K. and Tarbuck, E.J. (2000). Essentials of Geology, 7e. United States of America: Prentice Hall.

      47 Mak, T.C.W. and Gong‐Du, Z. (1992). Crystallography in Modern Chemistry: A Resource Book of Crystal Structures. United States of America: Wiley.

      48 Michalske, T.A. and Bunker, B.C. (1987). The fracturing of glass. Sci. Am. 257 (6): 122–129.

      49 Mochizuki, K. and Koga, K. (2015). Solid−liquid critical behavior of water. Proc. Natl. Acad. Sci. 112 (27): 8221–8226. https://doi.org/10.1071/pnas.1422829112.

      50 Monroe, J.S., Wicander, R., and Hazlett, R.W. (2006). Physical Geology: Exploring the Earth, 6e, 203–204. Belmont: Thomson.

      51 Natole, R. (1995). Global Gas Turbine News, 4. International Gas Turbine Institute, ASME.

      52 Porter, D.A. and Easterling, K., E. (1992). Phase Transformation in Metals


Скачать книгу