HPLC optimal einsetzen. Группа авторов

HPLC optimal einsetzen - Группа авторов


Скачать книгу
Johnson, E.L., Gloor, R. und Majors, R.E. (1978). Coupled column chromatography employing exclusion and a reversed phase. A potential general approach to sequential analysis. Journal of Chromatography 149: 571–585, https://doi.org/10.1016/S0021-9673(00)81012-2.

      9 Luo, H., Zhong, W., Yang, J., Zhuang, P., Meng, F., Caldwell, J., Mao, B. und Welch, C.J. (2017). 2D-LC as an online desalting tool allowing peptide identification directly from MS unfriendly HPLC methods. Journal of Pharmaceutical and Biomedical Analysis 137: 139–145, https://doi.org/10.1016/j.jpba.2016.11.012.

      10 Jayamanne, M., Granelli, I., Tjernberg, A. und Edlund, P.-O. (2010). Development of a two-dimensional liquid chromatography system for isolation of drug metabolites. Journal of Pharmaceutical and Biomedical Analysis 51 (3): 649–657, https://doi.org/10.1016/j.jpba.2009.09.007.

      11 Groskreutz, S.R., Swenson, M.M., Secor, L.B. und Stoll, D.R. (2012). Selective comprehensive multi-dimensional separation for resolution enhancement in high performance liquid chromatography, Part I – Principles and instrumentation. Journal of Chromatography A 1228: 31–40, https://doi.org/10.1016/j.chroma.2011.06.035.

      12 Murphy, R.E., Schure, M.R. und Foley, J.P. (1998). Effect of sampling rate on resolution in comprehensive two-dimensional liquid chromatography. Analytical Chemistry 70: 1585–1594, https://doi.org/10.1021/ac971184b.

      13 Horie, K., Kimura, H., Ikegami, T., Iwatsuka, A., Saad, N., Fiehn, O. und Tanaka, N. (2007). Calculating optimal modulation periods to maximize the peak capacity in two-dimensional HPLC. Analytical Chemistry 79 (10): 3764–3770, https://doi.org/10.1021/ac062002t.

      14 Davis, J.M., Stoll, D.R. und Carr, P.W. (2008). Effect of first-dimension undersampling on effective peak capacity in comprehensive two-dimensional separations. Analytical Chemistry 80 (2): 461–473, https://doi.org/10.1021/ac071504j.

      16 Pursch, M. und Buckenmaier, S. (2015). Loop-based multiple heart-cutting two-dimensional liquid chromatography for target analysis in complex matrices. Analytical Chemistry 87 (10): 5310–5317, https://doi.org/10.1021/acs.analchem.5b00492.

      17 Giddings, J.C. (1984). Two-dimensional separations: Concept and promise. Analytical Chemistry 56 (12): 1258A–1270A, https://doi.org/10.1021/ac00276a003.

      18 Gilar, M., Olivova, P., Daly, A.E. und Gebler, J.C. (2005). Orthogonality of separation in two-dimensional liquid chromatography. Analytical Chemistry 77 (19): 6426–6434, https://doi.org/10.1021/ac050923i.

      19 Dugo, P., Favoino, O., Luppino, R., Dugo, G. und Mondello, L. (2004). Comprehensive two-dimensional normalphase (adsorption) – Reversed-phase liquid chromatography. Analytical Chemistry 76 (9): 2525–2530, https://doi.org/10.1021/ac0352981.

      20 Pirok, B.W.J., Gargano, A.F.G. und Schoenmakers, P.J. (2017). Optimizing separations in on-line comprehensive two-dimensional liquid chromatography. Journal of Separation Science 41 (1): 68–98, https://doi.org/10.1002/jssc.201700863.

      21 Schure, M.R. und Davis, J.M. (2015). Orthogonal separations: Comparison of orthogonality metrics by statistical analysis. Journal of Chromatography A 1414: 60–76, https://doi.org/10.1016/j.chroma.2015.08.029.

      22 Gilar, M., Fridrich, J., Schure, M.R. und Jaworski, A. (2012). Comparison of orthogonality estimation methods for the two-dimensional separations of peptides. Analytical Chemistry 84 (20): 8722–8732, https://doi.org/10.1021/ac3020214.

      23 Stoll, D.R., Lhotka, H.R., Harmes, D.C., Madigan, B., Hsiao, J.J. und Staples, G.O. (2019). High resolution two-dimensional liquid chromatography coupled with mass spectrometry for robust and sensitive characterization of therapeutic antibodies at the peptide level. Journal of Chromatography B, November, 121832, https://doi.org/10.1016/j.jchromb.2019.121832.

      24 Davis, J.M., Stoll, D.R. und Carr, P.W. (2008). Dependence of effective peak capacity in comprehensive two-dimensional separations on the distribution of peak capacity between the two dimensions. Analytical Chemistry 80 (21): 8122–8134, https://doi.org/10.1021/ac800933z.

      25 Pirok, B.W.J., Stoll, D.R. und Schoenmakers, P.J. (2019). Recent developments in two-dimensional liquid chromatography – Fundamental improvements for practical applications. Analytical Chemistry 91 (1): 240–263, https://doi.org/10.1021/acs.analchem.8b04841.

      26 Stoll, D.R., Shoykhet, K., Petersson, P. und Buckenmaier, S. (2017). Active solvent modulation – A valve-based approach to improve separation compatibility in two-dimensional liquid chromatography. Analytical Chemistry 89 (17): 9260–9267, https://doi.org/10.1021/acs.analchem.7b02046.

      27 Carr, P.W., Wang, X. und Stoll, D.R. (2009). Effect of pressure, particle size, and time on optimizing performance in liquid chromatography. Analytical Chemistry 81 (13): 5342–5353, https://doi.org/10.1021/ac9001244.

      28 Talus, E.S., Witt, K.E. und Stoll, D.R. (2015). Effect of pressure pulses at the interface valve on the stability of second dimension columns in online comprehensive two-dimensional liquid chromatography. Journal of Chromatography A 1378: 50–57, https://doi.org/10.1016/j.chroma.2014.12.019.

      29 Koshel, B., Birdsall, R. und Chen, W. (2020). Two-dimensional liquid chromatography coupled to mass spectrometry for impurity analysis of dye-conjugated oligonucleotides. Journal of Chromatography B 1137: 121906, https://doi.org/10.1016/jjchromb.2019.121906.

      30 Vanhoenacker, G., Steenbeke, M., Sandra, K. und Sandra, P. (2018). Profiling nonionic surfactants applied in pharmaceutical formulations by using comprehensive two-dimensional LC with ELSD and MS detection. LCGC North America 36 (6): 385–393.

      31 Stoll, D.R., Cohen, J. und Carr, P. (2006). Fast, comprehensive online two-dimensional high performance liquid chromatography through the use of high temperature ultra-fast gradient elution reversed-phase liquid chromatography.


Скачать книгу