Переговоры. Полный курс. Гэвин Кеннеди
Однако с математической точки зрения его решение полностью обоснованно.
Это решение не утратит своей актуальности, если мы рассмотрим его приближенную версию для объяснения сделки, которую можем заключить мы с вами. Вспомните о том, что для Билла выигрыш в полезности равен чистой разнице между оценкой получаемых им товаров и оценкой тех товаров, которые он должен взамен отдать Джеку. Давайте применим эту идею к нашей сделке. Предположим, что я оцениваю полезность получаемого от вас пакета товаров как «100», а отдаю вам товары, оцененные как «65». Соответственно, мой чистый выигрыш составляет «35». В рамках той же самой сделки, если вы оцениваете показатель полезности приобретаемых вами товаров как «75», а отдаваемых взамен товаров как «25», то ваш чистый выигрыш равен «50».
Никто из нас не раскрывает (да и не может сделать это достаточно осмысленно) свои субъективные оценки сделки («35» для меня и «50» для вас), поэтому мы не можем сравнить относительную эффективность действий партнера и подсчитать ту ценность, которую эта сделка для него представляет. Наше соглашение о ее заключении служит доказательством того, что мы оба получаем какой-то дополнительный выигрыш. Что представляет собой этот выигрыш или что его формирует, неизвестно. Следовательно, мы не можем знать и того, является ли он максимальным. Но он явно обладает определенной ценностью, что объясняет наше соглашение. Если вы считаете решение Нэша недостаточно точным (!), то, возможно, вы рассматриваете его применение с точки зрения практика. Однако не все так просто. Теоретикам стоит время от времени выглядывать из окна своего кабинета, чтобы взглянуть на реальный мир. Ведь Нэш ожидает от своих игроков поведения, которое не свойственно большинству переговорщиков. И наиболее убедительные доказательства, подтверждающие этот факт, были получены сразу же после появления в 1950 г. решения Нэша.
Небольшая группа ученых из Исследовательского центра RAND в Санта-Монике, штат Калифорния, изобрели достаточно простую игру, которую они неоднократно применяли в своей работе. Сегодня она широко используется при проведении различных семинаров по совершенствованию навыков ведения переговоров и коллективной работы. Эта игра позволяет получить очень устойчивые результаты{15}. В теории игр она получила название «дилемма». Несмотря на наличие строгих правил, она не имеет конкретного содержания. Цель игроков – «набрать максимальное количество положительных баллов». Для этого они играют на очки, которые не имеют стоимости и используются исключительно как удобное средство подсчета баллов. Очки служат показателем, который в общих чертах аналогичен понятию полезности, «максимизация» которой является целью в модели Нэша.
Игру можно вести двумя способами, и игроки должны понять это самостоятельно. Никто не сообщает им ни того, каким образом следует играть, ни даже того, что существует два варианта ведения игры. Таким образом, на людей, принимающих в ней участие впервые, не влияют предубеждения и представления о «правильном»
15
Паундстоун, 1993.