Fractures in the Horse. Группа авторов
Norman, T.L. (2000). Calculation of porosity and osteonal cement line effects on the effective fracture toughness of cortical bone in longitudinal crack growth. J. Biomed. Mater. Res. 51: 504–509.
106 106 Vashishth, D., Behiri, J., and Bonfield, W. (1997). Crack growth resistance in cortical bone: concept of microcrack toughening. J. Biomech. 30: 763–769.
107 107 Yeni YN, Fyhrie DP. Collagen‐bridged microcrack model for cortical bone tensile strength. Paper presented at: American Society of Mechanical Engineers 2001 Conference; Jun 27 Jul 1, 2001; Snowbird, UT, USA.
108 108 Nalla, R.K., Kinney, J.H., and Ritchie, R.O. (2003). Mechanistic fracture criteria for the failure of human cortical bone. Nat. Mater. 2: 164–168.
109 109 Nalla, R.K., Kruzic, J.J., and Ritchie, R.O. (2004). On the origin of the toughness of mineralized tissue: microcracking or crack bridging? Bone 34: 790–798.
110 110 Nalla, R.K., Kruzic, J.J., Kinney, J.H., and Ritchie, R.O. (2005). Mechanistic aspects of fracture and R‐curve behavior in human cortical bone. Biomaterials 26: 217–231.
111 111 Ager, J.W., Balooch, G., and Ritchie, R.O. (2006). Fracture, aging, and disease in bone. J. Mater. Res. 21: 1878–1892.
112 112 Launey, M.E., Buehler, M.J., and Ritchie, R.O. (2010). On the mechanistic origins of toughness in bone. Annu. Rev. Mater. Res. 40: 25–53.
113 113 Nalla, R., Stölken, J., Kinney, J., and Ritchie, R. (2005). Fracture in human cortical bone: local fracture criteria and toughening mechanisms. J. Biomech. 38: 1517–1525.
114 114 Nalla, R., Kruzic, J., Kinney, J. et al. (2006). Role of microstructure in the aging‐related deterioration of the toughness of human cortical bone. Mater. Sci. Eng. C 26: 1251–1260.
115 115 Zioupos, P. (1998). Recent developments in the study of failure of solid biomaterials and bone: ‘fracture’ and ‘pre‐fracture’ toughness. Mater. Sci. Eng. C 6: 33–40.
116 116 Galley, S.A. and Donahue, S.W. (2006). Microdamage in bone: implications for fracture, repair, remodeling, and adaptation. Crit. Rev. Biomed. Eng. 34: 215–271.
117 117 Burr, D.B., Turner, C.H., Naick, P. et al. (1998). Does microdamage accumulation affect the mechanical properties of bone? J. Biomech. 31: 337–345.
118 118 Kaplan, F.S., Hayes, W.C., Keaveny, T.M. et al. (1994). Form and function of bone. In: Orthopaedic Basic Science (ed. S.R. Simon), 127–184. Rosemont, IL: American Academy of Orthopaedic Surgeons.
119 119 Martin, R.B. and Burr, D.B. (1989). Structure, Function, and Adaptation of Compact Bone. New York: Raven Press.
120 120 Turley, S.M., Thambyah, A., Riggs, C.M. et al. (2014). Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model. J. Anat. 224: 647–658.
121 121 Wolff, J. (1892). Das Gesetz der Transform der Knochen. Berlin: Hirschwald.
122 122 Lynch, M.E., Main, R.P., Xu, Q. et al. (2011). Tibial compression is anabolic in the adult mouse skeleton despite reduced responsiveness with aging. Bone 49: 439–446.
123 123 Radin, E.L., Parker, H.G., Pugh, J.W. et al. (1973). Response of joints to impact loading. 3. Relationship between trabecular microfractures and cartilage degeneration. J. Biomech. 6: 51–57.
124 124 Turner, C.H., Hsieh, Y.‐F., Müller, R. et al. (2001). Variation in bone biomechanical properties, microstructure, and density in BXH recombinant inbred mice. J. Bone Miner. Res. 16: 206–213.
125 125 Wergedal, J.E., Sheng, M.H.C., Ackert‐Bicknell, C.L. et al. (2005). Genetic variation in femur extrinsic strength in 29 different inbred strains of mice is dependent on variations in femur cross‐sectional geometry and bone density. Bone 36: 111–122.
126 126 Warden, S.J., Hurst, J.A., Sanders, M.S. et al. (2004). Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance. J. Bone Miner. Res. 20: 809–816.
127 127 Nunamaker, D.M. (2002). Relationships of exercise regimen and racetrack surface to modeling/remodeling of the third metacarpal bone in two‐year‐old Thoroughbred racehorses. Vet. Comp. Orthop. Traumatol. 15: 195–199.
128 128 Riggs, C.M., Whitehouse, G.H., and Boyde, A. (1999). Structural variation of the distal condyles of the third metacarpal and third metatarsal bones in the horse. Equine Vet. J. 31: 130–139.
129 129 Boyde, A., Riggs, C., and Firth, E. (2001). Densification by infilling marrow space in response to exercise in Thoroughbred horse distal cannon bone. Bone 28: S110.
130 130 Martin, R.B., Gibson, V.A., Stover, S.M. et al. (1997). Residual strength of equine bone is not reduced by intense fatigue loading: implications for stress fracture. J. Biomech. 30: 109–114.
131 131 Taylor, D., Casolari, E., and Bignardi, C. (2004). Predicting stress fractures using a probabilistic model of damage, repair and adaptation. J. Orthop. Res. 22: 487–494.
132 132 Martin, B. (1992). A theory of fatigue damage accumulation and repair in cortical bone. J. Orthop. Res. 10: 818–825.
133 133 Wang, X., Thomas, C.D.L., Clement, J.G. et al. (2016). A mechanostatistical approach to cortical bone remodelling: an equine model. Biomech. Model. Mechanobiol. 15: 29–42.
134 134 Hughes, J.M., Popp, K.L., Yanovich, R. et al. (2017). The role of adaptive bone formation in the etiology of stress fracture. Exp. Biol. Med. (Maywood) 242: 897–906.
135 135 Martin, B. (1995). Mathematical model for repair of fatigue damage and stress fracture in osteonal bone. J. Orthop. Res. 13: 309–316.
136 136 Collar, E.M., Zavodovskaya, R., Spriet, M. et al. (2015). Caudal lumbar vertebral fractures in California quarter horse and Thoroughbred racehorses. Equine Vet. J. 47: 573–579.
137 137 Haussler, K.K. and Stover, S.M. (1998). Stress fractures of the vertebral lamina and pelvis in Thoroughbred racehorses. Equine Vet. J. 30: 374–381.
138 138 Stover, S.M. (2003). The epidemiology of Thoroughbred racehorse injuries. Clin. Tech. Equine Pract. 2: 312–322.
139 139 Stover, S.M. and Murray, A. (2008). The California postmortem program: leading the way. Vet. Clin. North Am. Equine Pract. 24: 21–36.
140 140 Vallance, S.A., Spriet, M., and Stover, S.M. (2011). Catastrophic scapular fractures in Californian racehorses: pathology, morphometry and bone density. Equine Vet. J. 43: 676–685.
141 141 Estberg, L., Gardner, I.A., Stover, S.M. et al. (1995). Cumulative racing‐speed exercise distance cluster as a risk factor for fatal musculoskeletal injury in Thoroughbred racehorses in California. Prev. Vet. Med. 24: 253–263.
142 142 Haynes, P.F., Watters, J.W., McClure, J.R., and French, D. (1980). Incomplete tibial fractures in three horses. J. Am. Vet. Med. Assoc. 177: 1143–1145.
143 143 Pilsworth, R.C. and Webbon, P.M. (1988). The use of radionuclide bone scanning in the diagnosis of tibial ‘stress' fractures in the horse: a review of five cases. Equine Vet. J. Suppl. 20: 60–65.
144 144 Stover, S.M., Johnson, B.J., Daft, B.M. et al. (1992). An association between complete and incomplete stress fractures of the humerus in racehorses. Equine Vet. J. 24: 260–263.
145 145 Vallance, S., Lumsden, J., and O'Sullivan, C. (2009). Scapula stress fractures in Thoroughbred racehorses: eight cases (1997–2006). Equine Vet. Educ. 21: 554–559.
146 146 Kraus, B.M., Ross, M.W., and Boswell, R.P. (2005). Stress remodeling and stress fracture of the humerus in four standardbred racehorses. Vet. Radiol. Ultrasound 46: 524–528.
147 147 Mackey, V.S., Trout, D.R., Meagher, D.M., and Hornof, W.J. (1987). Stress fractures of the humerus, radius, and tibia in horses. Vet. Radiol. 28: 26–31.
148 148 O'Sullivan, C.B. and Lumsden, J.M. (2003). Stress fractures of the tibia and humerus in Thoroughbred racehorses: 99 cases (1992–2000). J. Am. Vet. Med. Assoc. 222: 491–498.
149 149 Dimock, A.N., Hoffman, K.D., Puchalski, S.M., and Stover, S.M. (2013). Humeral stress remodelling locations